赞
踩
ICP(Iterative Closest Point),即最近点迭代算法,是最为经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代进行上述运算直到满足给定的误差要求.
ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优。。
我接下来对pcl里面的源码了解了下,大体有些地方做了备注,但是未必万全正确。
#include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/registration/icp.h> int main (int argc, char** argv) { pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>); // Fill in the CloudIn data cloud_in->width = 5; cloud_in->height = 1; cloud_in->is_dense = false; cloud_in->points.resize (cloud_in->width * cloud_in->height); for (size_t i = 0; i < cloud_in->points.size (); ++i) { cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f); cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f); cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f); } std::cout << "Saved " << cloud_in->points.size () << " data points to input:" << std::endl; for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << " " << cloud_in->points[i].x << " " << cloud_in->points[i].y << " " << cloud_in->points[i].z << std::endl; *cloud_out = *cloud_in; std::cout << "size:" << cloud_out->points.size() << std::endl; for (size_t i = 0; i < cloud_in->points.size (); ++i) cloud_out->points[i].x = cloud_in->points[i].x + 0.7f; std::cout << "Transformed " << cloud_in->points.size () << " data points:" << std::endl; for (size_t i = 0; i < cloud_out->points.size (); ++i) std::cout << " " << cloud_out->points[i].x << " " << cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl; pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp; icp.setInputCloud(cloud_in); icp.setInputTarget(cloud_out); pcl::PointCloud<pcl::PointXYZ> Final; icp.align(Final); std::cout << "has converged:" << icp.hasConverged() << " score: " << icp.getFitnessScore() << std::endl; std::cout << icp.getFinalTransformation() << std::endl; return (0); }
其中主要的功能就是在align()这个函数中实现的。这个函数的大体位置是
registration/include/pcl/registraion/impl/registration.hpp这里。代码接下如下
//函数里调用这个真正的函数 template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::Registration<PointSource, PointTarget, Scalar>::align (PointCloudSource &output, const Matrix4& guess) { //分配input点云的下标,函数在common/include/pcl/impl/pcl_base.hpp if (!initCompute ()) return; // Resize the output dataset //如果output的下标数量和input不一样,那就成为一样的 if (output.points.size () != indices_->size ()) output.points.resize (indices_->size ()); // Copy the header output.header = input_->header; // Check if the output will be computed for all points or only a subset //这里没搞懂,感觉肯定是相等的呀? if (indices_->size () != input_->points.size ()) { output.width = static_cast<uint32_t> (indices_->size ()); output.height = 1; } else { output.width = static_cast<uint32_t> (input_->width); output.height = input_->height; } output.is_dense = input_->is_dense; // Copy the point data to output //这里的output就是final,也就是最后由input转化过来的点云,不是匹配的目标点云 //因为没有被初试化的,所以直接拷贝点云 for (size_t i = 0; i < indices_->size (); ++i) output.points[i] = input_->points[(*indices_)[i]]; // Set the internal point representation of choice unless otherwise noted if (point_representation_ && !force_no_recompute_) tree_->setPointRepresentation (point_representation_); // Perform the actual transformation computation converged_ = false; final_transformation_ = transformation_ = previous_transformation_ = Matrix4::Identity (); // Right before we estimate the transformation, we set all the point.data[3] values to 1 to aid the rigid // transformation //其实因为坐标是齐次坐标,所以第四个元素是1,前面三个元素是x,y,z for (size_t i = 0; i < indices_->size (); ++i) output.points[i].data[3] = 1.0; //实现的icp.hpp里面,这个函数是重载函数,所以要找对 //变种icp的更改基本都在这里,改动h,hpp文件,以及改动主要的computeTransformation函数,前面的都是预备工作,关系不大 computeTransformation (output, guess); //这个函数仅仅是返回一个布尔值true deinitCompute (); }
在这个align里面的最重要的函数就是computeTransformation (output, guess)。而这个函数就在registration/include/pcl/registraion/icp.hpp这里。
/// template <typename PointSource, typename PointTarget, typename Scalar> void pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation ( PointCloudSource &output, const Matrix4 &guess) { // Point cloud containing the correspondences of each point in <input, indices> //input_transformed是input被转换一次之后的点云 PointCloudSourcePtr input_transformed (new PointCloudSource); nr_iterations_ = 0; converged_ = false; // Initialise final transformation to the guessed one //都变成单位矩阵 final_transformation_ = guess; // If the guessed transformation is non identity if (guess != Matrix4::Identity ()) { input_transformed->resize (input_->size ()); // Apply guessed transformation prior to search for neighbours //在icp.hpp里48行 transformCloud (*input_, *input_transformed, guess); } else //否则就是直接复制,其实这里还没有开始转换,因为input_transformed还是原来的input *input_transformed = *input_; transformation_ = Matrix4::Identity (); // Make blobs if necessary //我也不知道这个步骤的含义,要制造异常点吗? determineRequiredBlobData (); PCLPointCloud2::Ptr target_blob (new PCLPointCloud2); if (need_target_blob_) //转换成二进制的点云 pcl::toPCLPointCloud2 (*target_, *target_blob); // Pass in the default target for the Correspondence Estimation/Rejection code correspondence_estimation_->setInputTarget (target_); if (correspondence_estimation_->requiresTargetNormals ()) correspondence_estimation_->setTargetNormals (target_blob); // Correspondence Rejectors need a binary blob for (size_t i = 0; i < correspondence_rejectors_.size (); ++i) { registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i]; if (rej->requiresTargetPoints ()) rej->setTargetPoints (target_blob); if (rej->requiresTargetNormals () && target_has_normals_) rej->setTargetNormals (target_blob); } //MSE是均方误差,这里是设置迭代的相关参数 convergence_criteria_->setMaximumIterations (max_iterations_); convergence_criteria_->setRelativeMSE (euclidean_fitness_epsilon_); convergence_criteria_->setTranslationThreshold (transformation_epsilon_); if (transformation_rotation_epsilon_ > 0) convergence_criteria_->setRotationThreshold (transformation_rotation_epsilon_); else convergence_criteria_->setRotationThreshold (1.0 - transformation_epsilon_); // Repeat until convergence //该方法的主体是一个do-while循环,查找最近点,剔除错误的对应点,收敛原则都在这里 //correspondence_estimation_ 、correspondence_rejectors_ 和 convergence_criteria_ //这三个变量的作用分别代表查找最近点,剔除错误的对应点,收敛准则 //因为是do-while循环,因此收敛准则的作用是跳出循环 //transformation_estimation_是求解ICP的具体算法 do { // Get blob data if needed PCLPointCloud2::Ptr input_transformed_blob; if (need_source_blob_) { input_transformed_blob.reset (new PCLPointCloud2); toPCLPointCloud2 (*input_transformed, *input_transformed_blob); } // Save the previously estimated transformation //第一步迭代之前,到这个步骤之前一直是单位矩阵 previous_transformation_ = transformation_; // Set the source each iteration, to ensure the dirty flag is updated correspondence_estimation_->setInputSource (input_transformed); if (correspondence_estimation_->requiresSourceNormals ()) correspondence_estimation_->setSourceNormals (input_transformed_blob); // Estimate correspondences //寻找迭代点云的对应点 //use_reciprocal_correspondence_是相反的对应关系 if (use_reciprocal_correspondence_) //determineReciprocalCorrespondences()在correspondence_estimation.hpp文件里,corr_dist_threshold_是最大距离 correspondence_estimation_->determineReciprocalCorrespondences (*correspondences_, corr_dist_threshold_); else correspondence_estimation_->determineCorrespondences (*correspondences_, corr_dist_threshold_); //if (correspondence_rejectors_.empty ()) //把已经有对应关系的correspondences_初始化temp_correspondences,当然这是一个动态的暂时内存 CorrespondencesPtr temp_correspondences (new Correspondences (*correspondences_)); for (size_t i = 0; i < correspondence_rejectors_.size (); ++i) { registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i]; PCL_DEBUG ("Applying a correspondence rejector method: %s.\n", rej->getClassName ().c_str ()); if (rej->requiresSourcePoints ()) rej->setSourcePoints (input_transformed_blob); if (rej->requiresSourceNormals () && source_has_normals_) rej->setSourceNormals (input_transformed_blob); rej->setInputCorrespondences (temp_correspondences); rej->getCorrespondences (*correspondences_); // Modify input for the next iteration if (i < correspondence_rejectors_.size () - 1) *temp_correspondences = *correspondences_; } size_t cnt = correspondences_->size (); // Check whether we have enough correspondences if (static_cast<int> (cnt) < min_number_correspondences_) { PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ()); convergence_criteria_->setConvergenceState(pcl::registration::DefaultConvergenceCriteria<Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES); converged_ = false; break; } //在前面的寻找一致性估计后(寻找对应点后),接下来的步骤又是主要的函数步骤,transformation_estimation_是求解ICP的具体算法 // Estimate the transform //查看transformation_estimation_svd.hpp中的TransformationEstimationSVD类的estimateRigidTransformation 方法 //这里就是target_是最终的目标点云,在迭代过程中不变,但是input_transformed总是会不停的更新,直到和目标重合 transformation_estimation_->estimateRigidTransformation (*input_transformed, *target_, *correspondences_, transformation_); // Tranform the data transformCloud (*input_transformed, *input_transformed, transformation_); // Obtain the final transformation final_transformation_ = transformation_ * final_transformation_; ++nr_iterations_; // Update the vizualization of icp convergence //if (update_visualizer_ != 0) // update_visualizer_(output, source_indices_good, *target_, target_indices_good ); converged_ = static_cast<bool> ((*convergence_criteria_)); } while (!converged_); // Transform the input cloud using the final transformation PCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n", final_transformation_ (0, 0), final_transformation_ (0, 1), final_transformation_ (0, 2), final_transformation_ (0, 3), final_transformation_ (1, 0), final_transformation_ (1, 1), final_transformation_ (1, 2), final_transformation_ (1, 3), final_transformation_ (2, 0), final_transformation_ (2, 1), final_transformation_ (2, 2), final_transformation_ (2, 3), final_transformation_ (3, 0), final_transformation_ (3, 1), final_transformation_ (3, 2), final_transformation_ (3, 3)); // Copy all the values output = *input_; // Transform the XYZ + normals //先把input_复制过去,然后在将转换后的点云叠加上去,至此,算法完成 transformCloud (*input_, output, final_transformation_); }
在computeTransformation()函数中主要用到的就是transformCloud()函数以及estimateRigidTransformation()函数还有determineCorrespondences()的函数。
transformCloud()位置
函数的位置也同样在icp.hpp里面。
determineCorrespondences()位置 registration/include/pcl/registraion/correspondence_estimation.hpp里面。estimateRigidTransformation()函数位置registration\include\pcl\registration\impl\transformation_estimation_svd.hpp。
template <typename PointSource, typename PointTarget, typename Scalar> void pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud ( const PointCloudSource &input, PointCloudSource &output, const Matrix4 &transform) { //这里的input和output在第一次的时候还是相同的值 //但是在第二次迭代的时候才是正常的步骤 Eigen::Vector4f pt (0.0f, 0.0f, 0.0f, 1.0f), pt_t; Eigen::Matrix4f tr = transform.template cast<float> (); // XYZ is ALWAYS present due to the templatization, so we only have to check for normals if (source_has_normals_) { Eigen::Vector3f nt, nt_t; Eigen::Matrix3f rot = tr.block<3, 3> (0, 0); for (size_t i = 0; i < input.size (); ++i) { 将input的数据填充到pt里 const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]); uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]); memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float)); memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float)); memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float)); if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) continue; //这里就是转换的公式,是齐次的转换 pt_t = tr * pt; //把pt_t的值给data_out memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float)); memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float)); memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float)); memcpy (&nt[0], data_in + nx_idx_offset_, sizeof (float)); memcpy (&nt[1], data_in + ny_idx_offset_, sizeof (float)); memcpy (&nt[2], data_in + nz_idx_offset_, sizeof (float)); if (!pcl_isfinite (nt[0]) || !pcl_isfinite (nt[1]) || !pcl_isfinite (nt[2])) continue; //这里是非齐次的转换 nt_t = rot * nt; //把转换后的nt_t给data_out memcpy (data_out + nx_idx_offset_, &nt_t[0], sizeof (float)); memcpy (data_out + ny_idx_offset_, &nt_t[1], sizeof (float)); memcpy (data_out + nz_idx_offset_, &nt_t[2], sizeof (float)); } } else { for (size_t i = 0; i < input.size (); ++i) { const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]); uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]); memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float)); memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float)); memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float)); if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) continue; //这里是齐次的转换 pt_t = tr * pt; memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float)); memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float)); memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float)); } } }
/// template <typename PointSource, typename PointTarget, typename Scalar> void pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences ( pcl::Correspondences &correspondences, double max_distance) { if (!initCompute ()) return; double max_dist_sqr = max_distance * max_distance; correspondences.resize (indices_->size ()); std::vector<int> index (1); std::vector<float> distance (1); pcl::Correspondence corr; unsigned int nr_valid_correspondences = 0; // Check if the template types are the same. If true, avoid a copy. // Both point types MUST be registered using the POINT_CLOUD_REGISTER_POINT_STRUCT macro! if (isSamePointType<PointSource, PointTarget> ()) { // Iterate over the input set of source indices for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx) { tree_->nearestKSearch (input_->points[*idx], 1, index, distance); if (distance[0] > max_dist_sqr) continue; corr.index_query = *idx; corr.index_match = index[0]; corr.distance = distance[0]; correspondences[nr_valid_correspondences++] = corr; } } else { PointTarget pt; // Iterate over the input set of source indices for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx) { // Copy the source data to a target PointTarget format so we can search in the tree copyPoint (input_->points[*idx], pt); tree_->nearestKSearch (pt, 1, index, distance); if (distance[0] > max_dist_sqr) continue; corr.index_query = *idx; corr.index_match = index[0]; corr.distance = distance[0]; correspondences[nr_valid_correspondences++] = corr; } } correspondences.resize (nr_valid_correspondences); deinitCompute (); }
#ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ #define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ #include <pcl/common/eigen.h> /// template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( const pcl::PointCloud<PointSource> &cloud_src, const pcl::PointCloud<PointTarget> &cloud_tgt, Matrix4 &transformation_matrix) const { size_t nr_points = cloud_src.points.size (); if (cloud_tgt.points.size () != nr_points) { PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", nr_points, cloud_tgt.points.size ()); return; } ConstCloudIterator<PointSource> source_it (cloud_src); ConstCloudIterator<PointTarget> target_it (cloud_tgt); estimateRigidTransformation (source_it, target_it, transformation_matrix); } /// template <typename PointSource, typename PointTarget, typename Scalar> void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( const pcl::PointCloud<PointSource> &cloud_src, const std::vector<int> &indices_src, const pcl::PointCloud<PointTarget> &cloud_tgt, Matrix4 &transformation_matrix) const { if (indices_src.size () != cloud_tgt.points.size ()) { PCL_ERROR ("[pcl::TransformationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ()); return; } ConstCloudIterator<PointSource> source_it (cloud_src, indices_src); ConstCloudIterator<PointTarget> target_it (cloud_tgt); estimateRigidTransformation (source_it, target_it, transformation_matrix); } /// template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( const pcl::PointCloud<PointSource> &cloud_src, const std::vector<int> &indices_src, const pcl::PointCloud<PointTarget> &cloud_tgt, const std::vector<int> &indices_tgt, Matrix4 &transformation_matrix) const { if (indices_src.size () != indices_tgt.size ()) { PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ()); return; } ConstCloudIterator<PointSource> source_it (cloud_src, indices_src); ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt); estimateRigidTransformation (source_it, target_it, transformation_matrix); } /// //先调用这个函数,四个参数,但是这个函数里面还会再调用一个重载函数,那个重载函数才是最关键的 template <typename PointSource, typename PointTarget, typename Scalar> void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( const pcl::PointCloud<PointSource> &cloud_src, const pcl::PointCloud<PointTarget> &cloud_tgt, const pcl::Correspondences &correspondences, Matrix4 &transformation_matrix) const { ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true); ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false); estimateRigidTransformation (source_it, target_it, transformation_matrix); } /// template <typename PointSource, typename PointTarget, typename Scalar> inline void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation ( ConstCloudIterator<PointSource>& source_it, ConstCloudIterator<PointTarget>& target_it, Matrix4 &transformation_matrix) const { // Convert to Eigen format const int npts = static_cast <int> (source_it.size ()); //下面介绍了两种求解方法, //1、利用eigen库里的umeyama直接求解 //2、普通的SVD分解,就是先求点云的中心点,然后再通过海瑟矩阵求得转换矩阵 if (use_umeyama_) { Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts); Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts); for (int i = 0; i < npts; ++i) { cloud_src (0, i) = source_it->x; cloud_src (1, i) = source_it->y; cloud_src (2, i) = source_it->z; ++source_it; cloud_tgt (0, i) = target_it->x; cloud_tgt (1, i) = target_it->y; cloud_tgt (2, i) = target_it->z; ++target_it; } // Call Umeyama directly from Eigen (PCL patched version until Eigen is released) //调用下面的代码实现了SVD求解,具体方法内部实现时通过Eigen3实现的 //直接通过svd分解求解转换矩阵,就这一条命令 transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false); } else { source_it.reset (); target_it.reset (); // <cloud_src,cloud_src> is the source dataset transformation_matrix.setIdentity (); Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt; // Estimate the centroids of source, target compute3DCentroid (source_it, centroid_src); compute3DCentroid (target_it, centroid_tgt); source_it.reset (); target_it.reset (); // Subtract the centroids from source, target Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean; demeanPointCloud (source_it, centroid_src, cloud_src_demean); demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean); getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix); } } /// template <typename PointSource, typename PointTarget, typename Scalar> void pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::getTransformationFromCorrelation ( const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_src_demean, const Eigen::Matrix<Scalar, 4, 1> ¢roid_src, const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_tgt_demean, const Eigen::Matrix<Scalar, 4, 1> ¢roid_tgt, Matrix4 &transformation_matrix) const { transformation_matrix.setIdentity (); // Assemble the correlation matrix H = source * target' Eigen::Matrix<Scalar, 3, 3> H = (cloud_src_demean * cloud_tgt_demean.transpose ()).topLeftCorner (3, 3); // Compute the Singular Value Decomposition Eigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3> > svd (H, Eigen::ComputeFullU | Eigen::ComputeFullV); Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU (); Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV (); // Compute R = V * U' if (u.determinant () * v.determinant () < 0) { for (int x = 0; x < 3; ++x) v (x, 2) *= -1; } Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose (); // Return the correct transformation transformation_matrix.topLeftCorner (3, 3) = R; const Eigen::Matrix<Scalar, 3, 1> Rc (R * centroid_src.head (3)); transformation_matrix.block (0, 3, 3, 1) = centroid_tgt.head (3) - Rc; } //#define PCL_INSTANTIATE_TransformationEstimationSVD(T,U) template class PCL_EXPORTS pcl::registration::TransformationEstimationSVD<T,U>; #endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ */
当初的代码注释,但是也是依照个人理解初次写,如果有问题,还请见谅!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。