当前位置:   article > 正文

ICP代码分析_icp代码详解

icp代码详解

PCL点云库的传统ICP代码分析

ICP算法的介绍

ICP(Iterative Closest Point),即最近点迭代算法,是最为经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代进行上述运算直到满足给定的误差要求.

ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优。。

PCL里面的源码分析

我接下来对pcl里面的源码了解了下,大体有些地方做了备注,但是未必万全正确。

  • 首先要介绍的是主体的ICP启动程序
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

int
 main (int argc, char** argv)
{
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_in (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_out (new pcl::PointCloud<pcl::PointXYZ>);

  // Fill in the CloudIn data
  cloud_in->width    = 5;
  cloud_in->height   = 1;
  cloud_in->is_dense = false;
  cloud_in->points.resize (cloud_in->width * cloud_in->height);
  for (size_t i = 0; i < cloud_in->points.size (); ++i)
  {
    cloud_in->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud_in->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
    cloud_in->points[i].z = 1024 * rand () / (RAND_MAX + 1.0f);
  }
  std::cout << "Saved " << cloud_in->points.size () << " data points to input:"
      << std::endl;
  for (size_t i = 0; i < cloud_in->points.size (); ++i) std::cout << "    " <<
      cloud_in->points[i].x << " " << cloud_in->points[i].y << " " <<
      cloud_in->points[i].z << std::endl;
  *cloud_out = *cloud_in;
  std::cout << "size:" << cloud_out->points.size() << std::endl;
  for (size_t i = 0; i < cloud_in->points.size (); ++i)
    cloud_out->points[i].x = cloud_in->points[i].x + 0.7f;
  std::cout << "Transformed " << cloud_in->points.size () << " data points:"
      << std::endl;
  for (size_t i = 0; i < cloud_out->points.size (); ++i)
    std::cout << "    " << cloud_out->points[i].x << " " <<
      cloud_out->points[i].y << " " << cloud_out->points[i].z << std::endl;
  pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
  icp.setInputCloud(cloud_in);
  icp.setInputTarget(cloud_out);
  pcl::PointCloud<pcl::PointXYZ> Final;
  icp.align(Final);
  std::cout << "has converged:" << icp.hasConverged() << " score: " <<
  icp.getFitnessScore() << std::endl;
  std::cout << icp.getFinalTransformation() << std::endl;

 return (0);
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48

其中主要的功能就是在align()这个函数中实现的。这个函数的大体位置是
registration/include/pcl/registraion/impl/registration.hpp这里。代码接下如下

  • align()函数
//函数里调用这个真正的函数
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::Registration<PointSource, PointTarget, Scalar>::align (PointCloudSource &output, const Matrix4& guess)
{
  //分配input点云的下标,函数在common/include/pcl/impl/pcl_base.hpp
  if (!initCompute ()) 
    return;

  // Resize the output dataset
  //如果output的下标数量和input不一样,那就成为一样的
  if (output.points.size () != indices_->size ())
    output.points.resize (indices_->size ());
  // Copy the header
  output.header   = input_->header;
  // Check if the output will be computed for all points or only a subset
  //这里没搞懂,感觉肯定是相等的呀?
  if (indices_->size () != input_->points.size ())
  {
    output.width    = static_cast<uint32_t> (indices_->size ());
    output.height   = 1;
  }
  else
  {
    output.width    = static_cast<uint32_t> (input_->width);
    output.height   = input_->height;
  }
  output.is_dense = input_->is_dense;

  // Copy the point data to output
  //这里的output就是final,也就是最后由input转化过来的点云,不是匹配的目标点云
  //因为没有被初试化的,所以直接拷贝点云
  for (size_t i = 0; i < indices_->size (); ++i)
    output.points[i] = input_->points[(*indices_)[i]];

  // Set the internal point representation of choice unless otherwise noted
  if (point_representation_ && !force_no_recompute_) 
    tree_->setPointRepresentation (point_representation_);

  // Perform the actual transformation computation
  converged_ = false;
  final_transformation_ = transformation_ = previous_transformation_ = Matrix4::Identity ();

  // Right before we estimate the transformation, we set all the point.data[3] values to 1 to aid the rigid 
  // transformation
  //其实因为坐标是齐次坐标,所以第四个元素是1,前面三个元素是x,y,z
  for (size_t i = 0; i < indices_->size (); ++i)
    output.points[i].data[3] = 1.0;

  //实现的icp.hpp里面,这个函数是重载函数,所以要找对
  //变种icp的更改基本都在这里,改动h,hpp文件,以及改动主要的computeTransformation函数,前面的都是预备工作,关系不大
  computeTransformation (output, guess);

  //这个函数仅仅是返回一个布尔值true
  deinitCompute ();
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56

在这个align里面的最重要的函数就是computeTransformation (output, guess)。而这个函数就在registration/include/pcl/registraion/icp.hpp这里。

  • computeTransformation()函数

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation (
    PointCloudSource &output, const Matrix4 &guess)
{
  // Point cloud containing the correspondences of each point in <input, indices>
  //input_transformed是input被转换一次之后的点云
  PointCloudSourcePtr input_transformed (new PointCloudSource);

  nr_iterations_ = 0;
  converged_ = false;

  // Initialise final transformation to the guessed one
  //都变成单位矩阵
  final_transformation_ = guess;

  // If the guessed transformation is non identity
  if (guess != Matrix4::Identity ())
  {
    input_transformed->resize (input_->size ());
     // Apply guessed transformation prior to search for neighbours
     //在icp.hpp里48行
    transformCloud (*input_, *input_transformed, guess);
  }
  else
    //否则就是直接复制,其实这里还没有开始转换,因为input_transformed还是原来的input
    *input_transformed = *input_;
 
  transformation_ = Matrix4::Identity ();

  // Make blobs if necessary
  //我也不知道这个步骤的含义,要制造异常点吗?
  determineRequiredBlobData ();
  PCLPointCloud2::Ptr target_blob (new PCLPointCloud2);
  if (need_target_blob_)
    //转换成二进制的点云
    pcl::toPCLPointCloud2 (*target_, *target_blob);

  // Pass in the default target for the Correspondence Estimation/Rejection code
  correspondence_estimation_->setInputTarget (target_);
  if (correspondence_estimation_->requiresTargetNormals ())
    correspondence_estimation_->setTargetNormals (target_blob);
  // Correspondence Rejectors need a binary blob
  for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
  {
    registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
    if (rej->requiresTargetPoints ())
      rej->setTargetPoints (target_blob);
    if (rej->requiresTargetNormals () && target_has_normals_)
      rej->setTargetNormals (target_blob);
  }

  //MSE是均方误差,这里是设置迭代的相关参数
  convergence_criteria_->setMaximumIterations (max_iterations_);
  convergence_criteria_->setRelativeMSE (euclidean_fitness_epsilon_);
  convergence_criteria_->setTranslationThreshold (transformation_epsilon_);
  if (transformation_rotation_epsilon_ > 0)
    convergence_criteria_->setRotationThreshold (transformation_rotation_epsilon_);
  else
    convergence_criteria_->setRotationThreshold (1.0 - transformation_epsilon_);

  // Repeat until convergence
  //该方法的主体是一个do-while循环,查找最近点,剔除错误的对应点,收敛原则都在这里
  //correspondence_estimation_ 、correspondence_rejectors_ 和 convergence_criteria_
  //这三个变量的作用分别代表查找最近点,剔除错误的对应点,收敛准则
  //因为是do-while循环,因此收敛准则的作用是跳出循环
  //transformation_estimation_是求解ICP的具体算法
  do
  {
    // Get blob data if needed
    PCLPointCloud2::Ptr input_transformed_blob;
    if (need_source_blob_)
    {
      input_transformed_blob.reset (new PCLPointCloud2);
      toPCLPointCloud2 (*input_transformed, *input_transformed_blob);
    }
    // Save the previously estimated transformation
    //第一步迭代之前,到这个步骤之前一直是单位矩阵
    previous_transformation_ = transformation_;

    // Set the source each iteration, to ensure the dirty flag is updated
    correspondence_estimation_->setInputSource (input_transformed);
    if (correspondence_estimation_->requiresSourceNormals ())
      correspondence_estimation_->setSourceNormals (input_transformed_blob);
    // Estimate correspondences
    //寻找迭代点云的对应点
    //use_reciprocal_correspondence_是相反的对应关系
    if (use_reciprocal_correspondence_)
      //determineReciprocalCorrespondences()在correspondence_estimation.hpp文件里,corr_dist_threshold_是最大距离
      correspondence_estimation_->determineReciprocalCorrespondences (*correspondences_, corr_dist_threshold_);
    else
      correspondence_estimation_->determineCorrespondences (*correspondences_, corr_dist_threshold_);

    //if (correspondence_rejectors_.empty ())
    //把已经有对应关系的correspondences_初始化temp_correspondences,当然这是一个动态的暂时内存
    CorrespondencesPtr temp_correspondences (new Correspondences (*correspondences_));
    for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
    {
      registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
      PCL_DEBUG ("Applying a correspondence rejector method: %s.\n", rej->getClassName ().c_str ());
      if (rej->requiresSourcePoints ())
        rej->setSourcePoints (input_transformed_blob);
      if (rej->requiresSourceNormals () && source_has_normals_)
        rej->setSourceNormals (input_transformed_blob);
      rej->setInputCorrespondences (temp_correspondences);
      rej->getCorrespondences (*correspondences_);
      // Modify input for the next iteration
      if (i < correspondence_rejectors_.size () - 1)
        *temp_correspondences = *correspondences_;
    }

    size_t cnt = correspondences_->size ();
    // Check whether we have enough correspondences
    if (static_cast<int> (cnt) < min_number_correspondences_)
    {
      PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());
      convergence_criteria_->setConvergenceState(pcl::registration::DefaultConvergenceCriteria<Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
      converged_ = false;
      break;
    }
    //在前面的寻找一致性估计后(寻找对应点后),接下来的步骤又是主要的函数步骤,transformation_estimation_是求解ICP的具体算法
    // Estimate the transform
    //查看transformation_estimation_svd.hpp中的TransformationEstimationSVD类的estimateRigidTransformation 方法
    //这里就是target_是最终的目标点云,在迭代过程中不变,但是input_transformed总是会不停的更新,直到和目标重合
    transformation_estimation_->estimateRigidTransformation (*input_transformed, *target_, *correspondences_, transformation_);

    // Tranform the data
    transformCloud (*input_transformed, *input_transformed, transformation_);

    // Obtain the final transformation    
    final_transformation_ = transformation_ * final_transformation_;

    ++nr_iterations_;

    // Update the vizualization of icp convergence
    //if (update_visualizer_ != 0)
    //  update_visualizer_(output, source_indices_good, *target_, target_indices_good );

    converged_ = static_cast<bool> ((*convergence_criteria_));
  }
  while (!converged_);

  // Transform the input cloud using the final transformation
  PCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n", 
      final_transformation_ (0, 0), final_transformation_ (0, 1), final_transformation_ (0, 2), final_transformation_ (0, 3),
      final_transformation_ (1, 0), final_transformation_ (1, 1), final_transformation_ (1, 2), final_transformation_ (1, 3),
      final_transformation_ (2, 0), final_transformation_ (2, 1), final_transformation_ (2, 2), final_transformation_ (2, 3),
      final_transformation_ (3, 0), final_transformation_ (3, 1), final_transformation_ (3, 2), final_transformation_ (3, 3));

  // Copy all the values
  output = *input_;
  // Transform the XYZ + normals
  //先把input_复制过去,然后在将转换后的点云叠加上去,至此,算法完成
  transformCloud (*input_, output, final_transformation_);
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157

在computeTransformation()函数中主要用到的就是transformCloud()函数以及estimateRigidTransformation()函数还有determineCorrespondences()的函数

transformCloud()位置
函数的位置也同样在icp.hpp里面。
determineCorrespondences()位置 registration/include/pcl/registraion/correspondence_estimation.hpp里面。estimateRigidTransformation()函数位置registration\include\pcl\registration\impl\transformation_estimation_svd.hpp。

  • transformCloud()函数
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud ( 
    const PointCloudSource &input, 
    PointCloudSource &output, 
    const Matrix4 &transform)
{
  //这里的input和output在第一次的时候还是相同的值
  //但是在第二次迭代的时候才是正常的步骤
  Eigen::Vector4f pt (0.0f, 0.0f, 0.0f, 1.0f), pt_t;
  Eigen::Matrix4f tr = transform.template cast<float> ();

  // XYZ is ALWAYS present due to the templatization, so we only have to check for normals
  if (source_has_normals_)
  {
    Eigen::Vector3f nt, nt_t;
    Eigen::Matrix3f rot = tr.block<3, 3> (0, 0);

    for (size_t i = 0; i < input.size (); ++i)
    {
      将input的数据填充到pt里
      const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);
      uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);
      memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));
      memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));
      memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));

      if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) 
        continue;

      //这里就是转换的公式,是齐次的转换
      pt_t = tr * pt;
      
      //把pt_t的值给data_out
      memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));
      memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));
      memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));

      memcpy (&nt[0], data_in + nx_idx_offset_, sizeof (float));
      memcpy (&nt[1], data_in + ny_idx_offset_, sizeof (float));
      memcpy (&nt[2], data_in + nz_idx_offset_, sizeof (float));

      if (!pcl_isfinite (nt[0]) || !pcl_isfinite (nt[1]) || !pcl_isfinite (nt[2])) 
        continue;
      //这里是非齐次的转换
      nt_t = rot * nt;

      //把转换后的nt_t给data_out
      memcpy (data_out + nx_idx_offset_, &nt_t[0], sizeof (float));
      memcpy (data_out + ny_idx_offset_, &nt_t[1], sizeof (float));
      memcpy (data_out + nz_idx_offset_, &nt_t[2], sizeof (float));
    }
  }
  else
  {
    for (size_t i = 0; i < input.size (); ++i)
    {
      const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);
      uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);
      memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));
      memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));
      memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));

      if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) 
        continue;

      //这里是齐次的转换
      pt_t = tr * pt;

      memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));
      memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));
      memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));
    }
  }
  
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • determineCorrespondences()函数
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences (
    pcl::Correspondences &correspondences, double max_distance)
{
  if (!initCompute ())
    return;

  double max_dist_sqr = max_distance * max_distance;

  correspondences.resize (indices_->size ());

  std::vector<int> index (1);
  std::vector<float> distance (1);
  pcl::Correspondence corr;
  unsigned int nr_valid_correspondences = 0;
  
  // Check if the template types are the same. If true, avoid a copy.
  // Both point types MUST be registered using the POINT_CLOUD_REGISTER_POINT_STRUCT macro!
  if (isSamePointType<PointSource, PointTarget> ())
  {
    // Iterate over the input set of source indices
    for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
    {
      tree_->nearestKSearch (input_->points[*idx], 1, index, distance);
      if (distance[0] > max_dist_sqr)
        continue;

      corr.index_query = *idx;
      corr.index_match = index[0];
      corr.distance = distance[0];
      correspondences[nr_valid_correspondences++] = corr;
    }
  }
  else
  {
    PointTarget pt;
    
    // Iterate over the input set of source indices
    for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
    {
      // Copy the source data to a target PointTarget format so we can search in the tree
      copyPoint (input_->points[*idx], pt);

      tree_->nearestKSearch (pt, 1, index, distance);
      if (distance[0] > max_dist_sqr)
        continue;

      corr.index_query = *idx;
      corr.index_match = index[0];
      corr.distance = distance[0];
      correspondences[nr_valid_correspondences++] = corr;
    }
  }
  correspondences.resize (nr_valid_correspondences);
  deinitCompute ();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • estimateRigidTransformation()
#ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_
#define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_

#include <pcl/common/eigen.h>

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  size_t nr_points = cloud_src.points.size ();
  if (cloud_tgt.points.size () != nr_points)
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", nr_points, cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  if (indices_src.size () != cloud_tgt.points.size ())
  {
    PCL_ERROR ("[pcl::TransformationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const std::vector<int> &indices_tgt,
    Matrix4 &transformation_matrix) const
{
  if (indices_src.size () != indices_tgt.size ())
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///

//先调用这个函数,四个参数,但是这个函数里面还会再调用一个重载函数,那个重载函数才是最关键的
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const pcl::Correspondences &correspondences,
    Matrix4 &transformation_matrix) const
{
  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    ConstCloudIterator<PointSource>& source_it,
    ConstCloudIterator<PointTarget>& target_it,
    Matrix4 &transformation_matrix) const
{
  // Convert to Eigen format
  const int npts = static_cast <int> (source_it.size ());


  //下面介绍了两种求解方法,

  //1、利用eigen库里的umeyama直接求解
  //2、普通的SVD分解,就是先求点云的中心点,然后再通过海瑟矩阵求得转换矩阵
  
  if (use_umeyama_)
  {
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts);
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts);

    for (int i = 0; i < npts; ++i)
    {
      cloud_src (0, i) = source_it->x;
      cloud_src (1, i) = source_it->y;
      cloud_src (2, i) = source_it->z;
      ++source_it;

      cloud_tgt (0, i) = target_it->x;
      cloud_tgt (1, i) = target_it->y;
      cloud_tgt (2, i) = target_it->z;
      ++target_it;
    }
    
    // Call Umeyama directly from Eigen (PCL patched version until Eigen is released)
    //调用下面的代码实现了SVD求解,具体方法内部实现时通过Eigen3实现的
    //直接通过svd分解求解转换矩阵,就这一条命令
    transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false);
  }
  else
  {
    source_it.reset (); target_it.reset ();
    // <cloud_src,cloud_src> is the source dataset
    transformation_matrix.setIdentity ();

    Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt;
    // Estimate the centroids of source, target
    compute3DCentroid (source_it, centroid_src);
    compute3DCentroid (target_it, centroid_tgt);
    source_it.reset (); target_it.reset ();

    // Subtract the centroids from source, target
    Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean;
    demeanPointCloud (source_it, centroid_src, cloud_src_demean);
    demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean);

    getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix);
  }
}

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::getTransformationFromCorrelation (
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_src_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_src,
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_tgt_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_tgt,
    Matrix4 &transformation_matrix) const
{
  transformation_matrix.setIdentity ();

  // Assemble the correlation matrix H = source * target'
  Eigen::Matrix<Scalar, 3, 3> H = (cloud_src_demean * cloud_tgt_demean.transpose ()).topLeftCorner (3, 3);

  // Compute the Singular Value Decomposition
  Eigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3> > svd (H, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU ();
  Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV ();

  // Compute R = V * U'
  if (u.determinant () * v.determinant () < 0)
  {
    for (int x = 0; x < 3; ++x)
      v (x, 2) *= -1;
  }

  Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose ();

  // Return the correct transformation
  transformation_matrix.topLeftCorner (3, 3) = R;
  const Eigen::Matrix<Scalar, 3, 1> Rc (R * centroid_src.head (3));
  transformation_matrix.block (0, 3, 3, 1) = centroid_tgt.head (3) - Rc;
}

//#define PCL_INSTANTIATE_TransformationEstimationSVD(T,U) template class PCL_EXPORTS pcl::registration::TransformationEstimationSVD<T,U>;

#endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ */

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176

当初的代码注释,但是也是依照个人理解初次写,如果有问题,还请见谅!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/122633
推荐阅读
相关标签
  

闽ICP备14008679号