当前位置:   article > 正文

Opencv——直方图、掩膜、直方图均衡化详细介绍及代码实现_直方图均衡化代码

直方图均衡化代码

一、图像直方图

1.1 定义:

图像直方图是图像的基本属性之一,也是反映图像像素数据分布的统计学特征,其横坐标代表了图像像素点在[0,255]范围中,纵坐标代表图像像素点出现的个数或百分比。如图:

 1.2 函数:cv2.calcHist([img1],[channels],mask,histSize,ranges)

img:输入图像

channels:通道,如果输入的是灰度图,则此参数为[0],如果是彩色图,传入参数为[0]或[1]或[2]分别对应BGR。

mask:掩膜统计整幅图的直方图就是None。如果画某一部分直方图,需要制作一个掩模图像并使用。掩模大小和img一样的np数组,需要的部分为255,不需要的部分为0.

histSize:直方图bin的数目,[0,256]所以就是256。

ranges:像素范围[0,256]顾头不顾尾啦。

1.3 代码实现:

(1)准备工作加灰度图显示:

  1. import cv2
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. %matplotlib inline
  5. #显示图像
  6. def cv_show(name,img):
  7. cv2.imshow(name,img)
  8. cv2.cv2.waitKey(0)
  9. cv2.destroyAllWindows()
  10. #导入图像
  11. img1=cv2.imread("C:/Users/bwy/Desktop/lena.bmp",0)
  12. hist=cv2.calcHist([img1],[0],None,[256],[0,256])
  13. print(hist.shape)
  14. plt.hist(img.ravel(),256)
  15. plt.show()

结果如图(灰度图):

 (2)彩色图三个不同的通道:

  1. img=cv2.imread("C:/Users/bwy/Desktop/7.png")
  2. cv_show('img',img)
  3. color=('b','g','r')
  4. for i,col in enumerate(color):
  5. histr=cv2.calcHist([img],[i],None,[256],[0,256])
  6. plt.plot(histr,color=col)
  7. plt.xlim([0,256])

结果如图:

 从上面两个图我们就可发现直方图很不均匀,可以比喻成不是矮胖的,所以我们接下来进行图像直方图均衡化。但是,在此之前我们在学习一下掩膜。

二、掩膜(mask)

2.1掩模mask思想:

掩模的大小和原图像大小一致。掩模中只有两部分,0和255,掩模中白色部分覆盖到的区域保留原图,黑色部分覆盖到的区域置为0。如果我们读入彩图,在构建np数组时,需要舍弃第三个维度,即通道。保留前两个维度img.shape[:2],掩模的size和原图像相同。由于mask是一个数组,可以使用切片方法将保留的位置变成白色255。

2.2代码:

  1. img.shape[:2]#(420, 607)
  2. #创建mast
  3. mask=np.zeros(img.shape[:2],np.uint8)
  4. mask[100:300,200:400]=255
  5. cv_show('mask',mask)

结果如图:

  1. masked_img=cv2.bitwise_and(img1,img1,mask=mask)
  2. cv_show('masked_img',masked_img)

 结果如图:

 2.3掩膜过程对比

  1. plt.subplot(221),plt.imshow(img1)
  2. plt.subplot(222),plt.imshow(mask)
  3. plt.subplot(223),plt.imshow(masked_img)
  4. plt.subplot(224),plt.plot(hist_full),plt.plot(hist_mask)
  5. plt.xlim([0,256])
  6. plt.show()

结果如图:

三、直方图均衡化

通过改变图像的直方图,来改变图像中各像素的灰度,用于增强局部的对比度而不影响整体的对比度。这种方法对于背景和前景都太亮或者太暗的图像非常有用。

3.1对图像整体进行均衡化

(1)进行均衡化后直方图前后对比显示:

  1. img=cv2.imread("C:/Users/bwy/Desktop/lena.bmp",0)
  2. plt.hist(img.ravel(),256)
  3. plt.show()
  4. equ=cv2.equalizeHist(img)
  5. plt.hist(equ.ravel(),256)
  6. plt.show()

结果对比图:

          

 (2)进行均衡化后图像前后对比显示:

  1. img=cv2.imread("C:/Users/bwy/Desktop/lena.bmp",0)
  2. equ=cv2.equalizeHist(img)
  3. res=np.hstack((img,equ))
  4. cv_show('res',res)

结果如图:(明显更亮了,好漂亮(●'◡'●)) 

 但是呢,这个方法也存在微瑕,那看一下如果我用下面这张图你就会发现了:

我们会发现这个帅锅的脸太亮了,我们观察不到细节了,细节丢失了,所以这个问题我们如何解决呢? 

 3.2 自适应均衡化

1、定义:

整幅图像会被分成很多小块,然后再对每一个小块分别进行直方图均衡化缺点是:如果有噪声的话,噪声会被放大。为了避免这种情况的出现要使用对比度限制。

2、代码:

  1. img2=cv2.imread("C:/Users/bwy/Desktop/1.png",0)
  2. img2.shape#(508, 672)
  3. img3=cv2.resize(img2,(400,300))
  4. equ1=cv2.equalizeHist(img3)
  5. clahe=cv2.createCLAHE(clipLimit=2.0,tileGridSize=(8,8))
  6. res_clahe=clahe.apply(img3)
  7. res=np.hstack((img3,equ1,res_clahe))
  8. cv_show('res',res)

结果如图:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/141173
推荐阅读
相关标签
  

闽ICP备14008679号