赞
踩
下面是hadoop官方源码下载地址,我下载的是hadoop-3.2.4,那就一起来看下吧
在我的博客<Hadoop-Yarn-NodeManager是如何启动容器的>中的ContainerLaunch prepareForLaunch()会触发ContainerEventType.CONTAINER_LAUNCHED事件,ContainerImpl会处理该事件,监控该容器的资源使用以及处理后续操作,下面让我们把源码捋起来吧。
- public class ContainerImpl implements Container {
- private static StateMachineFactory
- <ContainerImpl, ContainerState, ContainerEventType, ContainerEvent>
- stateMachineFactory =
- new StateMachineFactory<ContainerImpl, ContainerState, ContainerEventType, ContainerEvent>(ContainerState.NEW).
- //......省略其他事件处理......
- addTransition(ContainerState.SCHEDULED, ContainerState.RUNNING,
- ContainerEventType.CONTAINER_LAUNCHED, new LaunchTransition())
- //......省略其他事件处理......
- .installTopology();
-
- static class LaunchTransition extends ContainerTransition {
- @SuppressWarnings("unchecked")
- @Override
- public void transition(ContainerImpl container, ContainerEvent event) {
- //发送容器监控事件,去监控容器的使用
- container.sendContainerMonitorStartEvent();
- container.metrics.runningContainer();
- container.wasLaunched = true;
-
- if (container.isReInitializing()) {
- NMAuditLogger.logSuccess(container.user,
- AuditConstants.FINISH_CONTAINER_REINIT, "ContainerImpl",
- container.containerId.getApplicationAttemptId().getApplicationId(),
- container.containerId);
- }
- container.setIsReInitializing(false);
- // Check if this launch was due to a re-initialization.
- // If autocommit == true, then wipe the re-init context. This ensures
- // that any subsequent failures do not trigger a rollback.
- if (container.reInitContext != null
- && !container.reInitContext.canRollback()) {
- container.reInitContext = null;
- }
-
- if (container.recoveredAsKilled) {
- LOG.info("Killing " + container.containerId
- + " due to recovered as killed");
- container.addDiagnostics("Container recovered as killed.\n");
- container.dispatcher.getEventHandler().handle(
- new ContainersLauncherEvent(container,
- ContainersLauncherEventType.CLEANUP_CONTAINER));
- }
- }
- }
-
- private void sendContainerMonitorStartEvent() {
- long launchDuration = clock.getTime() - containerLaunchStartTime;
- metrics.addContainerLaunchDuration(launchDuration);
-
- long pmemBytes = getResource().getMemorySize() * 1024 * 1024L;
- float pmemRatio = daemonConf.getFloat(
- YarnConfiguration.NM_VMEM_PMEM_RATIO,
- YarnConfiguration.DEFAULT_NM_VMEM_PMEM_RATIO);
- long vmemBytes = (long) (pmemRatio * pmemBytes);
- int cpuVcores = getResource().getVirtualCores();
- long localizationDuration = containerLaunchStartTime -
- containerLocalizationStartTime;
- //这里会触发 ContainersMonitorEventType.START_MONITORING_CONTAINER
- //该事件由ContainersMonitorImpl处理
- dispatcher.getEventHandler().handle(
- new ContainerStartMonitoringEvent(containerId,
- vmemBytes, pmemBytes, cpuVcores, launchDuration,
- localizationDuration));
- }
-
- }
监视收集资源使用情况的容器,并在容器超出限制时抢占容器
- public class ContainersMonitorImpl extends AbstractService implements
- ContainersMonitor {
-
- private final static Logger LOG =
- LoggerFactory.getLogger(ContainersMonitorImpl.class);
- private final static Logger AUDITLOG =
- LoggerFactory.getLogger(ContainersMonitorImpl.class.getName()+".audit");
-
- private long monitoringInterval;
- private MonitoringThread monitoringThread;
- private int logCheckInterval;
- private LogMonitorThread logMonitorThread;
- private long logDirSizeLimit;
- private long logTotalSizeLimit;
- private CGroupElasticMemoryController oomListenerThread;
- private boolean containerMetricsEnabled;
- private long containerMetricsPeriodMs;
- private long containerMetricsUnregisterDelayMs;
-
- @VisibleForTesting
- final Map<ContainerId, ProcessTreeInfo> trackingContainers =
- new ConcurrentHashMap<>();
-
- private final ContainerExecutor containerExecutor;
- private final Dispatcher eventDispatcher;
- private final Context context;
- private ResourceCalculatorPlugin resourceCalculatorPlugin;
- private Configuration conf;
- private static float vmemRatio;
- //用于获取进程资源使用情况的接口类
- //注意:此类不应由外部用户使用,而只能由外部开发人员使用,以扩展和包括他们自己的流程树实现,尤其是对于Linux和Windows以外的平台。
- private Class<? extends ResourceCalculatorProcessTree> processTreeClass;
-
- private long maxVmemAllottedForContainers = UNKNOWN_MEMORY_LIMIT;
- private long maxPmemAllottedForContainers = UNKNOWN_MEMORY_LIMIT;
-
- private boolean pmemCheckEnabled;
- private boolean vmemCheckEnabled;
- private boolean elasticMemoryEnforcement;
- private boolean strictMemoryEnforcement;
- private boolean containersMonitorEnabled;
- private boolean logMonitorEnabled;
-
- private long maxVCoresAllottedForContainers;
-
- private static final long UNKNOWN_MEMORY_LIMIT = -1L;
- private int nodeCpuPercentageForYARN;
-
- /**
- * 容器度量的类型
- */
- @Private
- public enum ContainerMetric {
- CPU, MEMORY
- }
-
- //ResourceUtilization对集群中一组计算机资源的利用率进行建模
- private ResourceUtilization containersUtilization;
-
- private volatile boolean stopped = false;
-
- public ContainersMonitorImpl(ContainerExecutor exec,
- AsyncDispatcher dispatcher, Context context) {
- super("containers-monitor");
-
- this.containerExecutor = exec;
- this.eventDispatcher = dispatcher;
- this.context = context;
-
- this.monitoringThread = new MonitoringThread();
-
- this.logMonitorThread = new LogMonitorThread();
-
- //ResourceUtilization.newInstance(物理内存, 虚拟内存, cpu利用率)
- this.containersUtilization = ResourceUtilization.newInstance(0, 0, 0.0f);
- }
-
- @Override
- protected void serviceInit(Configuration myConf) throws Exception {
- this.conf = myConf;
- //监视容器的频率
- //获取 yarn.nodemanager.container-monitor.interval-ms 的值
- //如果未设置,则将使用yarn.nodemanager.resource-monitor.interval-ms的值。如果为0或为负数,则禁用容器监视。
- //监视节点和容器的频率
- //获取 yarn.nodemanager.resource-monitor.interval-ms 的值 默认值 3000ms 即 3s 如果为0或为负数,则禁用监视
- this.monitoringInterval =
- this.conf.getLong(YarnConfiguration.NM_CONTAINER_MON_INTERVAL_MS,
- this.conf.getLong(YarnConfiguration.NM_RESOURCE_MON_INTERVAL_MS,
- YarnConfiguration.DEFAULT_NM_RESOURCE_MON_INTERVAL_MS));
- //检查容器日志目录使用情况的频率(以毫秒为单位)
- //获取 yarn.nodemanager.container-log-monitor.interval-ms 的值 默认值 60000ms 即 1min
- this.logCheckInterval =
- conf.getInt(YarnConfiguration.NM_CONTAINER_LOG_MON_INTERVAL_MS,
- YarnConfiguration.DEFAULT_NM_CONTAINER_LOG_MON_INTERVAL_MS);
- //单个容器日志目录的磁盘空间限制(以字节为单位)1GB = 1024MB = 1024*1024KB = 1024*1024*1024B B就是字节
- //获取 yarn.nodemanager.container-log-monitor.dir-size-limit-bytes 的值 默认值 1000000000L 约等于 1G
- this.logDirSizeLimit =
- conf.getLong(YarnConfiguration.NM_CONTAINER_LOG_DIR_SIZE_LIMIT_BYTES,
- YarnConfiguration.DEFAULT_NM_CONTAINER_LOG_DIR_SIZE_LIMIT_BYTES);
- //容器所有日志的磁盘空间限制(以字节为单位)
- //获取 yarn.nodemanager.container-log-monitor.total-size-limit-bytes 的值 默认值 10000000000L 即 10G
- this.logTotalSizeLimit =
- conf.getLong(YarnConfiguration.NM_CONTAINER_LOG_TOTAL_SIZE_LIMIT_BYTES,
- YarnConfiguration.DEFAULT_NM_CONTAINER_LOG_TOTAL_SIZE_LIMIT_BYTES);
-
- //用于计算系统上的资源信息的插件,如果未配置插件,此方法将尝试返回可用于此系统的内存计算器插件。
- //先获取 yarn.nodemanager.container-monitor.resource-calculator.class (计算当前资源利用率的类) 的值 默认空
- //再获取 yarn.nodemanager.resource-calculator.class (计算当前资源利用率的类) 的值 默认空
- //如果都为空会判断操作系统,LINUX 返回 SysInfoLinux WINDOWS 返回 SysInfoWindows
- this.resourceCalculatorPlugin =
- ResourceCalculatorPlugin.getContainersMonitorPlugin(this.conf);
-
- LOG.info(" Using ResourceCalculatorPlugin : "
- + this.resourceCalculatorPlugin);
- //获取 yarn.nodemanager.container-monitor.process-tree.class (用于计算进程树资源利用率) 的值 默认为空
- processTreeClass = this.conf.getClass(
- YarnConfiguration.NM_CONTAINER_MON_PROCESS_TREE, null,
- ResourceCalculatorProcessTree.class);
- LOG.info(" Using ResourceCalculatorProcessTree : "
- + this.processTreeClass);
-
- //启用容器度量的标志
- //获取 yarn.nodemanager.container-metrics.enable 的值 默认 true
- this.containerMetricsEnabled =
- this.conf.getBoolean(YarnConfiguration.NM_CONTAINER_METRICS_ENABLE,
- YarnConfiguration.DEFAULT_NM_CONTAINER_METRICS_ENABLE);
- //容器度量刷新周期(毫秒)。设置为-1表示完成时刷新
- //获取 yarn.nodemanager.container-metrics.period-ms 的值 默认为-1
- this.containerMetricsPeriodMs =
- this.conf.getLong(YarnConfiguration.NM_CONTAINER_METRICS_PERIOD_MS,
- YarnConfiguration.DEFAULT_NM_CONTAINER_METRICS_PERIOD_MS);
- //完成后注销容器度量的延迟时间ms
- //获取 yarn.nodemanager.container-metrics.unregister-delay-ms 的值 默认 10000ms 即 10s
- this.containerMetricsUnregisterDelayMs = this.conf.getLong(
- YarnConfiguration.NM_CONTAINER_METRICS_UNREGISTER_DELAY_MS,
- YarnConfiguration.DEFAULT_NM_CONTAINER_METRICS_UNREGISTER_DELAY_MS);
-
- //NodeManagerHardwareUtils:用于确定与硬件相关的特性,例如节点上的处理器数量和内存量
- //函数返回应该为YARN容器留出多少内存。如果在配置文件中指定了一个数字,则会返回该数字。如果未指定任何内容,则为-1。
- //如果操作系统是“未知”操作系统(我们没有为其实现ResourceCalculatorPlugin),则返回默认的NodeManager物理内存。
- //如果操作系统实现了ResourceCalculatorPlugin,则计算为0.8*(RAM-2*JVM内存),即在考虑了DataNode和NodeManager使用的内存后,使用80%的内存。
- //如果数字小于1GB,请记录一条警告消息
- //获取 yarn.nodemanager.resource.detect-hardware-capabilities (启用节点功能的自动检测,如内存和CPU) 的值 默认 false
- //如果为 false ,即默认会 获取配置文件中的数字 yarn.nodemanager.resource.memory-mb (可分配给容器的内存量(MB))
- //这里 源码 和 官方文档 有出入 ,官方文档默认值为-1 源码默认值为 8 * 1024 MB 即 8G ,如果设置为 -1 源码还是会更改为 8G ,可以设置其他值
- //返回的值是 8*1024 这里又 * 1024 * 1024L 即为 转换为 8G 对应的字节 B
- long configuredPMemForContainers =
- NodeManagerHardwareUtils.getContainerMemoryMB(
- this.resourceCalculatorPlugin, this.conf) * 1024 * 1024L;
-
- //函数返回系统上可用于YARN容器的vcore数。如果在配置文件中指定了一个数字,则会返回该数字。如果未指定任何内容,则为-1。
- //如果操作系统是“未知”操作系统(我们没有为其实现ResourceCalculatorPlugin),则返回默认的NodeManager内核。
- //2.如果配置变量yarn.nodemanager.cpu.use_logical_processers设置为true,则返回逻辑处理器计数(将超线程计数为核心),否则返回物理核心计数。
- //获取 yarn.nodemanager.resource.cpu-vcores (可分配给容器的虚拟CPU内核数) 的值
- //可以分配给容器的vcore数。这是RM调度程序在为容器分配资源时使用的。这并不用于限制YARN容器使用的CPU数量。如果它设置为-1,
- //并且yarn.nodemanager.resource.detect-hardware-cability为true,则在Windows和Linux的情况下,它将自动从硬件中确定。
- //在其他情况下,默认情况下vcore的数量为8。
- long configuredVCoresForContainers =
- NodeManagerHardwareUtils.getVCores(this.resourceCalculatorPlugin,
- this.conf);
-
- //无论是否启用检查,都要设置这些。UI中必需
- // / 物理内存配置 //
- //maxPmemAllottedForContainers = 8G
- //maxVCoresAllottedForContainers = 8个虚拟核
- //这样看来 默认的容器能申请到的最多的资源为 8vc 8G
- this.maxPmemAllottedForContainers = configuredPMemForContainers;
- this.maxVCoresAllottedForContainers = configuredVCoresForContainers;
-
- // / 虚拟内存配置 //
- //获取 yarn.nodemanager.vmem-pmem-ratio 的值 默认 2.1
- //为容器设置内存限制时,虚拟内存与物理内存之间的比率。容器分配是以物理内存的形式表示的,虚拟内存的使用率可以超过此分配比例。
- vmemRatio = this.conf.getFloat(YarnConfiguration.NM_VMEM_PMEM_RATIO,
- YarnConfiguration.DEFAULT_NM_VMEM_PMEM_RATIO);
- //校验 为容器设置的内存限制比率,必须大于 0.99
- Preconditions.checkArgument(vmemRatio > 0.99f,
- YarnConfiguration.NM_VMEM_PMEM_RATIO + " should be at least 1.0");
- //容器可分配的最大虚拟默认为 : 2.1 * 8 = 16.8 G
- this.maxVmemAllottedForContainers =
- (long) (vmemRatio * configuredPMemForContainers);
-
- //是否将对容器强制执行物理内存限制
- //获取 yarn.nodemanager.pmem-check-enabled 的值 默认 true
- pmemCheckEnabled = this.conf.getBoolean(
- YarnConfiguration.NM_PMEM_CHECK_ENABLED,
- YarnConfiguration.DEFAULT_NM_PMEM_CHECK_ENABLED);
- //是否将对容器强制执行虚拟内存限制
- //获取 yarn.nodemanager.vmem-check-enabled 的值 默认 true
- vmemCheckEnabled = this.conf.getBoolean(
- YarnConfiguration.NM_VMEM_CHECK_ENABLED,
- YarnConfiguration.DEFAULT_NM_VMEM_CHECK_ENABLED);
- //启用弹性内存控制。这是Linux独有的功能。启用后,如果所有容器都超过了限制,则节点管理器会添加一个侦听器来接收事件。
- //限制由yarn.nodemanager.resource.memory-mb指定。如果未设置此项,则会根据功能设置限制。
- //有关详细信息,请参阅yarn.nodemanager.resource.detect-hardware-cability。该限制适用于物理或虚拟(rss+交换)内存,
- //具体取决于是否设置了yarn.nodemanager.pmem-check-enabled或yarn.node manager.vmem-check-enabled。
- //获取 yarn.nodemanager.elastic-memory-control.enabled 的值 默认 false
- elasticMemoryEnforcement = this.conf.getBoolean(
- YarnConfiguration.NM_ELASTIC_MEMORY_CONTROL_ENABLED,
- YarnConfiguration.DEFAULT_NM_ELASTIC_MEMORY_CONTROL_ENABLED);
- //是否启用YARN CGroups严格内存强制,顾名思义就是资源一旦超过设置的限制就会里面kill掉
- //获取 yarn.nodemanager.resource.memory.enforced 的值 默认 true
- strictMemoryEnforcement = conf.getBoolean(
- YarnConfiguration.NM_MEMORY_RESOURCE_ENFORCED,
- YarnConfiguration.DEFAULT_NM_MEMORY_RESOURCE_ENFORCED);
- LOG.info("Physical memory check enabled: " + pmemCheckEnabled);
- LOG.info("Virtual memory check enabled: " + vmemCheckEnabled);
- LOG.info("Elastic memory control enabled: " + elasticMemoryEnforcement);
- LOG.info("Strict memory control enabled: " + strictMemoryEnforcement);
-
- //默认不开启弹性内存控制,这段逻辑不走
- if (elasticMemoryEnforcement) {
- if (!CGroupElasticMemoryController.isAvailable()) {
- // Test for availability outside the constructor
- // to be able to write non-Linux unit tests for
- // CGroupElasticMemoryController
- throw new YarnException(
- "CGroup Elastic Memory controller enabled but " +
- "it is not available. Exiting.");
- } else {
- this.oomListenerThread = new CGroupElasticMemoryController(
- conf,
- context,
- ResourceHandlerModule.getCGroupsHandler(),
- pmemCheckEnabled,
- vmemCheckEnabled,
- pmemCheckEnabled ?
- maxPmemAllottedForContainers : maxVmemAllottedForContainers
- );
- }
- }
-
- //isContainerMonitorEnabled() 默认为 true
- //monitoringInterval 默认 3000ms 即 3s
- //因此 containersMonitorEnabled 默认为 true 容器监视默认是开启的
- containersMonitorEnabled =
- isContainerMonitorEnabled() && monitoringInterval > 0;
- LOG.info("ContainersMonitor enabled: " + containersMonitorEnabled);
-
- //用于启用容器日志监视器的标志,该监视器强制执行容器日志目录大小限制
- //获取 yarn.nodemanager.container-log-monitor.enable 的值 默认 false
- logMonitorEnabled =
- conf.getBoolean(YarnConfiguration.NM_CONTAINER_LOG_MONITOR_ENABLED,
- YarnConfiguration.DEFAULT_NM_CONTAINER_LOG_MONITOR_ENABLED);
- LOG.info("Container Log Monitor Enabled: "+ logMonitorEnabled);
-
- //获取为YARN容器配置的物理CPU的百分比。返回值是 0 ~ 100
- //可以分配给容器的CPU百分比。此设置允许用户限制YARN容器使用的CPU数量。目前仅在使用cgroups的Linux上运行。默认情况是使用100%的CPU。
- //获取 yarn.nodemanager.resource.percentage-physical-cpu-limit 的值 默认值 100
- //nodeCpuPercentageForYARN 默认为 100
- nodeCpuPercentageForYARN =
- NodeManagerHardwareUtils.getNodeCpuPercentage(this.conf);
-
- //默认为 true 对容器强制执行物理内存限制
- if (pmemCheckEnabled) {
- //如果无法确定实际设备,则记录下
- long totalPhysicalMemoryOnNM = UNKNOWN_MEMORY_LIMIT;
- //默认操作系统是LINUX resourceCalculatorPlugin = SysInfoLinux
- if (this.resourceCalculatorPlugin != null) {
- //SysInfoLinux 只读取/proc/meminfo、解析和计算一次内存信息。给 ramSize、hardwareCorruptSize、hugePagesTotal、hugePageSize赋值
- //totalPhysicalMemoryOnNM = (ramSize - hardwareCorruptSize - (hugePagesTotal * hugePageSize)) * 1024
- //totalPhysicalMemoryOnNM = (ram磁盘空间 - ram已损坏空间 - (保留的标准大页 * 每个标准大页的大小)) * 1024
- //可以参考我的这篇 <Hadoop-Yarn-NodeManager如何计算Linux系统上的资源信息> 博客中了解
- //ramSize : ram 磁盘空间
- //hardwareCorruptSize : RAM已损坏且不可用大小
- //hugePagesTotal : 保留的标准大页
- //hugePageSize : 每个标准大页的大小
- totalPhysicalMemoryOnNM = this.resourceCalculatorPlugin
- .getPhysicalMemorySize();
- if (totalPhysicalMemoryOnNM <= 0) {
- LOG.warn("NodeManager's totalPmem could not be calculated. "
- + "Setting it to " + UNKNOWN_MEMORY_LIMIT);
- totalPhysicalMemoryOnNM = UNKNOWN_MEMORY_LIMIT;
- }
- }
-
- //分配给容器的物理内存,占可用物理内存总量的80%以上可能会发生Thrashing
- if (totalPhysicalMemoryOnNM != UNKNOWN_MEMORY_LIMIT &&
- this.maxPmemAllottedForContainers > totalPhysicalMemoryOnNM * 0.80f) {
- LOG.warn("NodeManager configured with "
- + TraditionalBinaryPrefix.long2String(maxPmemAllottedForContainers,
- "", 1)
- + " physical memory allocated to containers, which is more than "
- + "80% of the total physical memory available ("
- + TraditionalBinaryPrefix.long2String(totalPhysicalMemoryOnNM, "",
- 1) + "). Thrashing might happen.");
- }
- }
- super.serviceInit(this.conf);
- }
-
- //是否启用容器监视器
- //获取 yarn.nodemanager.container-monitor.enabled 的值 默认 true
- private boolean isContainerMonitorEnabled() {
- return conf.getBoolean(YarnConfiguration.NM_CONTAINER_MONITOR_ENABLED,
- YarnConfiguration.DEFAULT_NM_CONTAINER_MONITOR_ENABLED);
- }
-
- /**
- * 获取最佳进程树计算器
- * @param pId container process id
- * @return process tree calculator
- */
- private ResourceCalculatorProcessTree
- getResourceCalculatorProcessTree(String pId) {
- return ResourceCalculatorProcessTree.
- getResourceCalculatorProcessTree(
- pId, processTreeClass, conf);
- }
-
- private boolean isResourceCalculatorAvailable() {
- if (resourceCalculatorPlugin == null) {
- LOG.info("ResourceCalculatorPlugin is unavailable on this system. " + this
- .getClass().getName() + " is disabled.");
- return false;
- }
- if (getResourceCalculatorProcessTree("0") == null) {
- LOG.info("ResourceCalculatorProcessTree is unavailable on this system. "
- + this.getClass().getName() + " is disabled.");
- return false;
- }
- return true;
- }
-
- @Override
- protected void serviceStart() throws Exception {
- //containersMonitorEnabled 默认为 true 容器监视默认是开启的
- if (containersMonitorEnabled) {
- //起一个线程对容器进行监视
- this.monitoringThread.start();
- }
- //默认不开启弹性内存控制
- if (oomListenerThread != null) {
- //如果开启基于cgroups的一种弹性内存控制,允许某些container可以使用超过设定值的资源,只要不超过整体的阈值。
- //因此会启动这个线程oomListenerThread监控是否超过了整体的阈值
- oomListenerThread.start();
- }
- //容器日志监视器默认关闭
- if (logMonitorEnabled) {
- this.logMonitorThread.start();
- }
- super.serviceStart();
- }
-
-
-
- private class MonitoringThread extends Thread {
- MonitoringThread() {
- super("Container Monitor");
- }
-
- @Override
- public void run() {
-
- while (!stopped && !Thread.currentThread().isInterrupted()) {
- // 打印processTrees以进行调试
- if (LOG.isDebugEnabled()) {
- StringBuilder tmp = new StringBuilder("[ ");
- for (ProcessTreeInfo p : trackingContainers.values()) {
- tmp.append(p.getPID());
- tmp.append(" ");
- }
- LOG.debug("Current ProcessTree list : "
- + tmp.substring(0, tmp.length()) + "]");
- }
-
- //用于计算容器的总资源利用率的临时结构
- ResourceUtilization trackedContainersUtilization =
- ResourceUtilization.newInstance(0, 0, 0.0f);
-
- //现在对trackingContainers进行监视,检查内存使用情况并杀死任何溢出的容器
- //每个容器在启动时都会将本容器信息放入trackingContainers中,详细看onStartMonitoringContainer()
- long vmemUsageByAllContainers = 0;
- long pmemByAllContainers = 0;
- long cpuUsagePercentPerCoreByAllContainers = 0;
- for (Entry<ContainerId, ProcessTreeInfo> entry : trackingContainers
- .entrySet()) {
- ContainerId containerId = entry.getKey();
- ProcessTreeInfo ptInfo = entry.getValue();
- try {
- //初始化未初始化的进程树
- initializeProcessTrees(entry);
-
- String pId = ptInfo.getPID();
- if (pId == null || !isResourceCalculatorAvailable()) {
- continue; //无法跟踪该 processTree
- }
- if (LOG.isDebugEnabled()) {
- LOG.debug("Constructing ProcessTree for : PID = " + pId
- + " ContainerId = " + containerId);
- }
- ResourceCalculatorProcessTree pTree = ptInfo.getProcessTree();
- pTree.updateProcessTree(); // 更新 process-tree
- //获取进程树中所有进程使用的虚拟内存。
- long currentVmemUsage = pTree.getVirtualMemorySize();
- //获取进程树中所有进程使用的常驻集大小(rss)内存
- //rss 是 Resident Set Size 的缩写 表示驻留内存大小,是进程当前实际使用物理内存大小(包含共享库占用的内存)
- long currentPmemUsage = pTree.getRssMemorySize();
- if (currentVmemUsage < 0 || currentPmemUsage < 0) {
- // YARN-6862/YARN-5021 If the container just exited or for
- // another reason the physical/virtual memory is UNAVAILABLE (-1)
- // the values shouldn't be aggregated.
- LOG.info("Skipping monitoring container {} because "
- + "memory usage is not available.", containerId);
- continue;
- }
-
- // if machine has 6 cores and 3 are used,
- // cpuUsagePercentPerCore should be 300%
- //基于样本之间的平均值,获取进程树中所有进程的CPU使用率,作为与顶部相似的总CPU周期的比率。因此,如果使用四分之二的核心,则返回200.0。
- //注意:在CPU使用率不可用的情况下,将返回UNAVAILABLE。不建议返回任何其他错误代码。
- float cpuUsagePercentPerCore = pTree.getCpuUsagePercent();
- if (cpuUsagePercentPerCore < 0) {
- // CPU usage is not available likely because the container just
- // started. Let us skip this turn and consider this container
- // in the next iteration.
- LOG.info("Skipping monitoring container " + containerId
- + " since CPU usage is not yet available.");
- continue;
- }
-
- //记录使用情况指标
- recordUsage(containerId, pId, pTree, ptInfo, currentVmemUsage,
- currentPmemUsage, trackedContainersUtilization);
- //检查资源限制,如果超出限制,请采取措施
- checkLimit(containerId, pId, pTree, ptInfo,
- currentVmemUsage, currentPmemUsage);
-
- //计算所有容器的总内存使用情况
- vmemUsageByAllContainers += currentVmemUsage;
- pmemByAllContainers += currentPmemUsage;
- //计算所有容器的总cpu使用量
- cpuUsagePercentPerCoreByAllContainers += cpuUsagePercentPerCore;
-
- //向时间线服务报告使用情况指标
- reportResourceUsage(containerId, currentPmemUsage,
- cpuUsagePercentPerCore);
- } catch (Exception e) {
- // Log the exception and proceed to the next container.
- LOG.warn("Uncaught exception in ContainersMonitorImpl "
- + "while monitoring resource of {}", containerId, e);
- }
- }
- if (LOG.isDebugEnabled()) {
- LOG.debug("Total Resource Usage stats in NM by all containers : "
- + "Virtual Memory= " + vmemUsageByAllContainers
- + ", Physical Memory= " + pmemByAllContainers
- + ", Total CPU usage(% per core)= "
- + cpuUsagePercentPerCoreByAllContainers);
- }
-
- //保存容器的聚合利用率
- setContainersUtilization(trackedContainersUtilization);
-
- //将容器利用率度量发布到节点管理器度量系统
- NodeManagerMetrics nmMetrics = context.getNodeManagerMetrics();
- if (nmMetrics != null) {
- nmMetrics.setContainerUsedMemGB(
- trackedContainersUtilization.getPhysicalMemory());
- nmMetrics.setContainerUsedVMemGB(
- trackedContainersUtilization.getVirtualMemory());
- nmMetrics.setContainerCpuUtilization(
- trackedContainersUtilization.getCPU());
- }
-
- try {
- //监视容器的频率 默认3s
- Thread.sleep(monitoringInterval);
- } catch (InterruptedException e) {
- LOG.warn(ContainersMonitorImpl.class.getName()
- + " is interrupted. Exiting.");
- break;
- }
- }
- }
-
-
- private void recordUsage(ContainerId containerId, String pId,
- ResourceCalculatorProcessTree pTree,
- ProcessTreeInfo ptInfo,
- long currentVmemUsage, long currentPmemUsage,
- ResourceUtilization trackedContainersUtilization) {
- // if machine has 6 cores and 3 are used,
- // cpuUsagePercentPerCore should be 300% and
- // cpuUsageTotalCoresPercentage should be 50%
- float cpuUsagePercentPerCore = pTree.getCpuUsagePercent();
- float cpuUsageTotalCoresPercentage = cpuUsagePercentPerCore /
- resourceCalculatorPlugin.getNumProcessors();
-
- //乘以1000以避免在转换为int时丢失数据
- //cpu 核数利用率 * 1000 * 8 / 100
- //比如 0.5 * 1000 * 8 / 100 = 40
- int milliVcoresUsed = (int) (cpuUsageTotalCoresPercentage * 1000
- * maxVCoresAllottedForContainers /nodeCpuPercentageForYARN);
- //进程树的虚拟内存限制(字节)
- long vmemLimit = ptInfo.getVmemLimit();
- //进程树的物理内存限制(字节)
- long pmemLimit = ptInfo.getPmemLimit();
- if (AUDITLOG.isDebugEnabled()) {
- int vcoreLimit = ptInfo.getCpuVcores();
- long cumulativeCpuTime = pTree.getCumulativeCpuTime();
- AUDITLOG.debug(String.format(
- "Resource usage of ProcessTree %s for container-id %s:" +
- " %s %%CPU: %f %%CPU-cores: %f" +
- " vCores-used: %d of %d Cumulative-CPU-ms: %d",
- pId, containerId.toString(),
- formatUsageString(
- currentVmemUsage, vmemLimit,
- currentPmemUsage, pmemLimit),
- cpuUsagePercentPerCore,
- cpuUsageTotalCoresPercentage,
- milliVcoresUsed / 1000, vcoreLimit,
- cumulativeCpuTime));
- }
-
- //添加此容器的资源利用率
- trackedContainersUtilization.addTo(
- (int) (currentPmemUsage >> 20),
- (int) (currentVmemUsage >> 20),
- milliVcoresUsed / 1000.0f);
-
- //将使用情况添加到容器指标
- if (containerMetricsEnabled) {
- ContainerMetrics.forContainer(
- containerId, containerMetricsPeriodMs,
- containerMetricsUnregisterDelayMs).recordMemoryUsage(
- (int) (currentPmemUsage >> 20));
- ContainerMetrics.forContainer(
- containerId, containerMetricsPeriodMs,
- containerMetricsUnregisterDelayMs).recordCpuUsage((int)
- cpuUsagePercentPerCore, milliVcoresUsed);
- }
- }
-
-
- private void checkLimit(ContainerId containerId, String pId,
- ResourceCalculatorProcessTree pTree,
- ProcessTreeInfo ptInfo,
- long currentVmemUsage,
- long currentPmemUsage) {
- Optional<Boolean> isMemoryOverLimit = Optional.empty();
- String msg = "";
- int containerExitStatus = ContainerExitStatus.INVALID;
-
- //strictMemoryEnforcement 默认 true elasticMemoryEnforcement默认 false
- //因此不走这个逻辑 elasticMemoryEnforcement 开启
- if (strictMemoryEnforcement && elasticMemoryEnforcement) {
- //弹性内存控制和严格内存控制都是通过cgroups实现的。如果容器超过其请求,它会被弹性内存控制机制冻结,所以我们在这里检查并杀死它。
- //否则,如果节点从未超过其限制,并且基于procfs的内存核算与基于cgroup的核算不同,则不会杀死容器。
-
- //默认为 CGroupsMemoryResourceHandlerImpl
- //处理程序类来处理内存控制器。YARN已经在Java中提供了一个物理内存监视器,但它不如CGroups。
- //此处理程序设置软内存和硬内存限制。软限制设置为硬限制的90%。
- MemoryResourceHandler handler =
- ResourceHandlerModule.getMemoryResourceHandler();
- if (handler != null) {
- //检查容器是否处于OOM状态
- isMemoryOverLimit = handler.isUnderOOM(containerId);
- containerExitStatus = ContainerExitStatus.KILLED_EXCEEDED_PMEM;
- msg = containerId + " is under oom because it exceeded its" +
- " physical memory limit";
- }
- } else if (strictMemoryEnforcement || elasticMemoryEnforcement) {
- //如果启用了基于cgroup的内存控制
- isMemoryOverLimit = Optional.of(false);
- }
-
- if (!isMemoryOverLimit.isPresent()) {
- long vmemLimit = ptInfo.getVmemLimit();
- long pmemLimit = ptInfo.getPmemLimit();
- //当流程从1开始时,我们想看看是否有超过1次迭代的流程。
- long curMemUsageOfAgedProcesses = pTree.getVirtualMemorySize(1);
- long curRssMemUsageOfAgedProcesses = pTree.getRssMemorySize(1);
- //默认为 true 对容器强制执行虚拟内存限制
- if (isVmemCheckEnabled()
- && isProcessTreeOverLimit(containerId.toString(),
- currentVmemUsage, curMemUsageOfAgedProcesses, vmemLimit)) {
- //当前使用率(年龄=0)始终高于过期使用率。我们不在消息中显示老化的大小,而是根据当前使用情况进行增量
- long delta = currentVmemUsage - vmemLimit;
- // 容器(根进程)仍处于活动状态,内存溢出
- // 转储流程树,然后进行清理
- msg = formatErrorMessage("virtual",
- formatUsageString(currentVmemUsage, vmemLimit,
- currentPmemUsage, pmemLimit),
- pId, containerId, pTree, delta);
- isMemoryOverLimit = Optional.of(true);
- containerExitStatus = ContainerExitStatus.KILLED_EXCEEDED_VMEM;
- //默认为 true 对容器强制执行物理内存限制
- //isProcessTreeOverLimit():
- //检查容器的进程树的当前内存使用量是否超过限制
-
- //当java进程exec是一个程序时,它可能会暂时占据其内存大小的两倍,因为JVM执行fork()+exec(),在fork时间创建父内存的副本。
- //如果监视线程在同一个实例中检测到容器树使用的内存,它可能会认为它超出了限制并杀死该树,因为进程本身没有故障。
-
- //我们通过采用启发式检查来解决这个问题:如果进程树超过内存限制两倍以上,它将立即被杀死;如果进程树的进程比监控间隔早,
- //甚至超过内存限制1倍,它将被杀死。否则,它会被赋予怀疑的标志,可以再进行一次迭代。
- } else if (isPmemCheckEnabled()
- && isProcessTreeOverLimit(containerId.toString(),
- currentPmemUsage, curRssMemUsageOfAgedProcesses,
- pmemLimit)) {
- //当前使用率(年龄=0)始终高于过期使用率。我们不在消息中显示老化的大小,而是根据当前使用情况进行增量
- long delta = currentPmemUsage - pmemLimit;
- //容器(根进程)仍处于活动状态,内存溢出
- //转储流程树,然后进行清理
- msg = formatErrorMessage("physical",
- formatUsageString(currentVmemUsage, vmemLimit,
- currentPmemUsage, pmemLimit),
- pId, containerId, pTree, delta);
- isMemoryOverLimit = Optional.of(true);
- containerExitStatus = ContainerExitStatus.KILLED_EXCEEDED_PMEM;
- }
- }
-
- if (isMemoryOverLimit.isPresent() && isMemoryOverLimit.get()
- && trackingContainers.remove(containerId) != null) {
- //虚拟内存或物理内存超出限制。使容器失败并删除相应的流程树
- LOG.warn(msg);
- //警告(如果不是领导者)
- if (!pTree.checkPidPgrpidForMatch()) {
- LOG.error("Killed container process with PID " + pId
- + " but it is not a process group leader.");
- }
- //杀掉容器
- eventDispatcher.getEventHandler().handle(
- new ContainerKillEvent(containerId,
- containerExitStatus, msg));
- LOG.info("Removed ProcessTree with root " + pId);
- }
- }
-
-
-
- private void onStopMonitoringContainer(
- ContainersMonitorEvent monitoringEvent, ContainerId containerId) {
- LOG.info("Stopping resource-monitoring for " + containerId);
- updateContainerMetrics(monitoringEvent);
- trackingContainers.remove(containerId);
- }
-
- private void onStartMonitoringContainer(
- ContainersMonitorEvent monitoringEvent, ContainerId containerId) {
- ContainerStartMonitoringEvent startEvent =
- (ContainerStartMonitoringEvent) monitoringEvent;
- LOG.info("Starting resource-monitoring for " + containerId);
- updateContainerMetrics(monitoringEvent);
- trackingContainers.put(containerId,
- new ProcessTreeInfo(containerId, null, null,
- startEvent.getVmemLimit(), startEvent.getPmemLimit(),
- startEvent.getCpuVcores()));
- }
- }
1、启动容器触发ContainerEventType.CONTAINER_LAUNCHED事件
2、ContainerImpl会处理1中事件,启动容器的同时触发容器监控事件ContainersMonitorEventType.START_MONITORING_CONTAINER
3、该事件由ContainersMonitorImpl调用onStartMonitoringContainer()处理2中事件
4、将启动的容器id、虚拟内存限制、物理内存限制、cpu核数限制封装成ProcessTreeInfo,并放到跟踪所有容器的trackingContainers中
5、ContainersMonitorImpl初始化时会获取监控容器的频率(默认3s一次)、监控容器日志目录大小频率(默认1min一次)、容器磁盘大小限制(默认1G)、全部容器总磁盘大小限制(默认10G)、系统资源计算插件(可以自己实现,默认LINUX 使用SysInfoLinux,WINDOWS 使用SysInfoWindows)、计算processTree资源利用率的类、系统为YARN容器留内存大小、YARN容器可用vcore数、虚拟内存和物理内存比率、内存控制策略等
6、ContainersMonitorImpl启动时会启动一个线程(monitoringThread)对容器的资源使用进行监控,如果超过限制就杀掉容器。默认只开启这一个线程,oomListenerThread和logMonitorThread默认不开启
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。