当前位置:   article > 正文

yolov9 瑞芯微芯片rknn部署、地平线芯片Horizon部署、TensorRT部署

yolov9

  特别说明:参考官方开源的yolov9代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

  模型和完整仿真测试代码,放在github上参考链接 模型和代码

  之前写过yolov8检测、分割、关键点模型的部署的多篇博文,yolov8还没玩溜,这不yolov9又来了。yolov9刚出来两三天,有朋友就问:yolov9都出来好几天了,怎么没有见到你写一篇部署博客呢。其实yolov9出来两三天,说实话还是通过朋友告知才知道的。一直想抽时间把yolov9部署给盘一下,奈何一拖就又是好几天,这两天抽时间终于把这个yolov9给盘完了。

1 模型和训练

  训练代码参考官方开源的yolov9训练代码,考虑到有些板端对SiLU的支持有限,本示例训练前把激活函数SiLU替换成了ReLU,训练使用的模型配置文件是yolov9.yaml,输入分辨率640x640。用 from thop import profile 统计的模型计算量和参数 Flops: 120081612800.0(120G),Params: 55388336.0(55M)

2 导出 yolov9 onnx

  导出onnx时需要修改两个地方。

  特别说明:只在导出onnx时修改,训练时无需修改,修改以下代码后运行会报错,但是可以生成onnx文件,无需关注报错。

   第一个处:增加以下代码(红色框内新增):
在这里插入图片描述

        reslut = []
        for i in range(self.nl):
            reslut.append(self.cv2[i](x[i]))
            reslut.append(self.cv3[i](x[i]))
        return reslut
  • 1
  • 2
  • 3
  • 4
  • 5

第二处修改:增加以下代码(红色框内新增)
在这里插入图片描述

class CBFuse(nn.Module):
    def __init__(self, idx):
        super(CBFuse, self).__init__()
        self.idx = idx

    def forward(self, xs):
        target_size = xs[-1].shape[2:]

        if target_size[0] < 10:
            res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]
            out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
            return out
        j = 0
        for i, x in enumerate(xs[:-1]):
            j = i
            if target_size[0] < 10:
                continue
            if i == 0:
                x0 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')
            if i == 1:
                x1 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')
            if i == 2:
                x2 = F.interpolate(x[self.idx[i]], size=target_size, mode='nearest')

        if j == 2 and target_size[0] > 10:
            out = x0 + x1 + x2 + xs[-1:][0]
            return out
        if j == 1 and target_size[0] > 10:
            out = x0 + x1 + xs[-1:][0]
            return out
        if j == 0 and target_size[0] > 10:
            out = x0 + xs[-1:][0]
            return out

        res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]
        out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
        return out
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

最后:增加保存onnx文件代码
在这里插入图片描述

    print(torch.onnx.ir_version)
    print("===========  onnx =========== ")
    dummy_input0 = torch.randn(1, 3, 640, 640)
    input_names = ["data"]
    output_names = ["output1", "output2", "output3", "output4", "output5", "output6"]
    torch.onnx.export(model, (dummy_input0), "./test_onnx/yolov9_relu_80class.onnx", verbose=True, input_names=input_names, output_names=output_names, opset_version=12)
    print("======================== convert onnx Finished! .... ")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

3 yolov9 测试效果

pytorhc测试效果
在这里插入图片描述

onnx测试效果(确保修改CBFuse后导出的onnx测试结果和pytorch是一致的)
在这里插入图片描述

4 tensorRT 时耗

  模型训练使用的配置文件是yolov9.yaml,输入分辨率是640x640,转trt使用的fp16_mode,显卡Tesla V100,cuda_11.0。
在这里插入图片描述

5 rknn 板端C++部署

  模型训练使用的配置文件是yolov9.yaml,输入分辨率是640x640,芯片rk3588.

  把在rk3588板子上测试的模特推理时耗,和用C++代码写的后处理时耗,都给贴出来供大家参考。【rk3588的C++代码参考链接】
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/198408
推荐阅读
相关标签
  

闽ICP备14008679号