当前位置:   article > 正文

pytorch transformers从头开始实现情感分析模型_基于transformer的情感分析代码

基于transformer的情感分析代码

最近用transformers用的比较多,用transformers加载预训练模型,然后做预测的教程挺多的,但是加载自己的数据进行训练的挺少的,我这里分享一下我的实现:

数据准备

数据来自于kaggle上面情感分析的数据,地址为:
https://www.kaggle.com/lava18/google-play-store-apps?select=googleplaystore_user_reviews.csv

导入函数

import transformers
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
import torch
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from textwrap import wrap

from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F

RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

加载数据,预处理

df = pd.read_csv("archive/googleplaystore_user_reviews.csv")
df=df.dropna()
def to_sentiment(rating):
    if rating == 'Positive':
        return 2
    elif rating == 'Neutral':
        return 1
    return 0
df['sentiment'] = df.Sentiment.apply(to_sentiment)
class_names=["Negative","Neutral","Positive"]
df_train, df_test = train_test_split(df, test_size=0.1, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

创建dataset和dataloader

class GPReviewDataset(Dataset):
    def __init__(self, reviews, targets, tokenizer, max_len):
        self.reviews = reviews
        self.targets = targets
        self.tokenizer = tokenizer
        self.max_len = max_len
  
    def __len__(self):
        return len(self.reviews)
  
    def __getitem__(self, item):
        review = str(self.reviews[item])
        target = self.targets[item]

        encoding = self.tokenizer.encode_plus(
          review,
          add_special_tokens=True,
          max_length=self.max_len,
          return_token_type_ids=False,
          pad_to_max_length=True,
          return_attention_mask=True,
          return_tensors='pt',
        )
#         print(target)
        return {
          'review_text': review,
          'input_ids': encoding['input_ids'].flatten(),
          'attention_mask': encoding['attention_mask'].flatten(),
          'targets': torch.tensor(target, dtype=torch.long)
        }

def create_data_loader(df, tokenizer, max_len, batch_size):
    ds = GPReviewDataset(
        reviews=df.Translated_Review.to_numpy(),
        targets=df.sentiment.to_numpy(),
        tokenizer=tokenizer,
        max_len=max_len
      )

    return DataLoader(
        ds,
        batch_size=batch_size,
        num_workers=4
      )


BATCH_SIZE = 16
MAX_LEN = 160
PRE_TRAINED_MODEL_NAME = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(PRE_TRAINED_MODEL_NAME)
train_data_loader = create_data_loader(df_train, tokenizer, MAX_LEN, BATCH_SIZE)
val_data_loader = create_data_loader(df_val, tokenizer, MAX_LEN, BATCH_SIZE)
test_data_loader = create_data_loader(df_test, tokenizer, MAX_LEN, BATCH_SIZE)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

创建基于BERT的情感分析模型

class SentimentClassifier(nn.Module):
    def __init__(self, n_classes):
        super(SentimentClassifier, self).__init__()
        self.bert = BertModel.from_pretrained(PRE_TRAINED_MODEL_NAME)
        self.drop = nn.Dropout(p=0.3)
        self.out = nn.Linear(self.bert.config.hidden_size, n_classes)
  
    def forward(self, input_ids, attention_mask):
        _, pooled_output = self.bert(
          input_ids=input_ids,
          attention_mask=attention_mask
        )
        output = self.drop(pooled_output)
        return self.out(output)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

训练和验证


model = SentimentClassifier(len(class_names))
model = model.to(device)
EPOCHS = 10

optimizer = AdamW(model.parameters(), lr=2e-5, correct_bias=False)
total_steps = len(train_data_loader) * EPOCHS

scheduler = get_linear_schedule_with_warmup(
  optimizer,
  num_warmup_steps=0,
  num_training_steps=total_steps
)

loss_fn = nn.CrossEntropyLoss().to(device)


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

训练函数

def train_epoch(
  model, 
  data_loader, 
  loss_fn, 
  optimizer, 
  device, 
  scheduler, 
  n_examples
):
    model = model.train()

    losses = []
    correct_predictions = 0
  
    for d in data_loader:
        input_ids = d["input_ids"].to(device)
        attention_mask = d["attention_mask"].to(device)
        targets = d["targets"].to(device)

        outputs = model(
      input_ids=input_ids,
      attention_mask=attention_mask
        )

        _, preds = torch.max(outputs, dim=1)
        loss = loss_fn(outputs, targets)

        correct_predictions += torch.sum(preds == targets)
        losses.append(loss.item())

        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()

    return correct_predictions.double() / n_examples, np.mean(losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

验证函数:

def eval_model(model, data_loader, loss_fn, device, n_examples):
    model = model.eval()
    losses = []
    correct_predictions = 0

    with torch.no_grad():
        for d in data_loader:
            input_ids = d["input_ids"].to(device)
            attention_mask = d["attention_mask"].to(device)
            targets = d["targets"].to(device)
            outputs = model(
            input_ids=input_ids,
            attention_mask=attention_mask
          )
            _, preds = torch.max(outputs, dim=1)

            loss = loss_fn(outputs, targets)

            correct_predictions += torch.sum(preds == targets)
            losses.append(loss.item())

    return correct_predictions.double() / n_examples, np.mean(losses)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

调用他们来进行训练:

history = defaultdict(list)
best_accuracy = 0

for epoch in range(EPOCHS):
    print(f'Epoch {epoch + 1}/{EPOCHS}')
    print('-' * 10)
    train_acc, train_loss = train_epoch(
        model,
        train_data_loader,    
        loss_fn, 
        optimizer, 
        device, 
        scheduler, 
        len(df_train)
      )

    print(f'Train loss {train_loss} accuracy {train_acc}')

    val_acc, val_loss = eval_model(
        model,
        val_data_loader,
        loss_fn, 
        device, 
        len(df_val)
      )

    print(f'Val   loss {val_loss} accuracy {val_acc}')
    print()

    history['train_acc'].append(train_acc)
    history['train_loss'].append(train_loss)
    history['val_acc'].append(val_acc)
    history['val_loss'].append(val_loss)

    if val_acc > best_accuracy:
        torch.save(model.state_dict(), 'best_model_state.bin')
        best_accuracy = val_acc
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

结束,虽然预测只需要加载模型,然后把输入变成id就行了。但是训练过程还是比预测过程麻烦很多,我这里只提供了一种基础方法,还有很多需要完善的地方,欢迎改进。

参考文献

[1].Google Play Store Apps. https://www.kaggle.com/lava18/google-play-store-apps?select=googleplaystore_user_reviews.csv
[2].Sentiment Analysis with BERT and Transformers by Hugging Face using PyTorch and Python. https://curiousily.com/posts/sentiment-analysis-with-bert-and-hugging-face-using-pytorch-and-python/
[3].Sentiment Analysis with BERT. https://github.com/curiousily/Getting-Things-Done-with-Pytorch/blob/master/08.sentiment-analysis-with-bert.ipynb

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/198521?site
推荐阅读
相关标签
  

闽ICP备14008679号