当前位置:   article > 正文

FLink中StreamGraph的构建

FLink中StreamGraph的构建

前言

Graph的概念:
Flink中的执行图可以分为四层:StreamGraph—>JobGraph—>ExecutionGraph—>物理执行图
StreamGraph:是根据用户通过StreamAPI编写的代码生成的最原始的图,用来表示程序的拓扑结构。
JobGraph:StreamGraph经过优化后生成了JobGraph,提交给JobManager的数据结构。主要优化chain合并算子链,减少数据在节点之间,序列化、反序列化、以及网络传输的消耗。
ExecutionGraph:JobManager根据JobGraph生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager根据ExecutionGraph对Job进行调度后,在各个TaskManager上部署Task后形成的“图”,并不是具体的数据结构。
StreamGraph

StreamGraph的组成

StreamGraph中的每个顶点都是StreamNode,这个StreamNode其实就是一个Operator,连接两个StreamNode的是StreamEdge对象。
在StreamGraph向JobGraph转化过程中,会对StreamNode进行相应的优化,根据条件会对StreamNode 进行合并成为了JobVertex,而每个jobvertex就是JobGraph的端点,JobGraph的输出对象是IntermediateDataSet,存储JobGraph的输出内容,在JobGraph中,连接上游端点输出和下游端点的边对象叫做JobEdge。
以wordCount代码为例:
2
4
3
6
generator()方法中的configureStreamGraph 设置状态后端和检查点checkpoint

private void configureStreamGraph(final StreamGraph graph) {
        checkNotNull(graph);

        graph.setChaining(chaining);
        graph.setChainingOfOperatorsWithDifferentMaxParallelism(
                chainingOfOperatorsWithDifferentMaxParallelism);
        graph.setUserArtifacts(userArtifacts);
        graph.setTimeCharacteristic(timeCharacteristic);
        graph.setVertexDescriptionMode(configuration.get(PipelineOptions.VERTEX_DESCRIPTION_MODE));
        graph.setVertexNameIncludeIndexPrefix(
                configuration.get(PipelineOptions.VERTEX_NAME_INCLUDE_INDEX_PREFIX));
        graph.setAutoParallelismEnabled(
                configuration.get(BatchExecutionOptions.ADAPTIVE_AUTO_PARALLELISM_ENABLED));
        graph.setEnableCheckpointsAfterTasksFinish(
                configuration.get(
                        ExecutionCheckpointingOptions.ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH));
        setDynamic(graph);

        if (shouldExecuteInBatchMode) {
            configureStreamGraphBatch(graph);
            setDefaultBufferTimeout(-1);
        } else {
            configureStreamGraphStreaming(graph);
        }
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

对于一个具体的transformation 又是如何转换成StreamNode和StreamEdge的?

// 进入transform()方法 
for (Transformation<?> transformation : transformations) {
            transform(transformation);
        }
  • 1
  • 2
  • 3
  • 4
private Collection<Integer> transform(Transformation<?> transform) {
        // 首先判断算子是否已经被transform了
        if (alreadyTransformed.containsKey(transform)) {
            return alreadyTransformed.get(transform);
        }

        LOG.debug("Transforming " + transform);

        if (transform.getMaxParallelism() <= 0) {

            // if the max parallelism hasn't been set, then first use the job wide max parallelism
            // from the ExecutionConfig.
            int globalMaxParallelismFromConfig = executionConfig.getMaxParallelism();
            if (globalMaxParallelismFromConfig > 0) {
                transform.setMaxParallelism(globalMaxParallelismFromConfig);
            }
        }

        transform
                .getSlotSharingGroup()
                .ifPresent(
                        slotSharingGroup -> {
                            final ResourceSpec resourceSpec =
                                    SlotSharingGroupUtils.extractResourceSpec(slotSharingGroup);
                            if (!resourceSpec.equals(ResourceSpec.UNKNOWN)) {
                                slotSharingGroupResources.compute(
                                        slotSharingGroup.getName(),
                                        (name, profile) -> {
                                            if (profile == null) {
                                                return ResourceProfile.fromResourceSpec(
                                                        resourceSpec, MemorySize.ZERO);
                                            } else if (!ResourceProfile.fromResourceSpec(
                                                            resourceSpec, MemorySize.ZERO)
                                                    .equals(profile)) {
                                                throw new IllegalArgumentException(
                                                        "The slot sharing group "
                                                                + slotSharingGroup.getName()
                                                                + " has been configured with two different resource spec.");
                                            } else {
                                                return profile;
                                            }
                                        });
                            }
                        });

        // call at least once to trigger exceptions about MissingTypeInfo
        transform.getOutputType();

        @SuppressWarnings("unchecked")
        final TransformationTranslator<?, Transformation<?>> translator =
                (TransformationTranslator<?, Transformation<?>>)
                		//从translatorMap里拿出transformation和transformationTranslator,transformationTranslator的作用就是将Transformation转换为StreamNode
                        translatorMap.get(transform.getClass());
		// 将当前transformation转换成StreamNode 和StreamEdge用于构建StreamGraph
        Collection<Integer> transformedIds;
        if (translator != null) {
        	// 进入translate方法 查看具体转换流程
            transformedIds = translate(translator, transform);
        } else {
            transformedIds = legacyTransform(transform);
        }

        // need this check because the iterate transformation adds itself before
        // transforming the feedback edges
        if (!alreadyTransformed.containsKey(transform)) {
            alreadyTransformed.put(transform, transformedIds);
        }

        return transformedIds;
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

translate
translate方法:
1、获取当前算子 转换成的transformation的所接收的所有上游输出的transform节点
2、设置slot共享组
3、流批模式的判断 ,进入translateForStreaming 具体实现类选择SimpleTransformationTranslator.
在这里插入图片描述
当前的转换只针对当前算子的节点,此处无法得到下游算子的信息,所以这里不会进行StreamEdge的构建,进入translateForStreaminfgInternal方法,由于debug现在走的是split的 translate 所以具体实现为OneIputTransformationTranslator。

    public Collection<Integer> translateForStreamingInternal(
            final OneInputTransformation<IN, OUT> transformation, final Context context) {
         // 进入translateInternal方法
        return translateInternal(
                transformation,
                transformation.getOperatorFactory(),
                transformation.getInputType(),
                transformation.getStateKeySelector(),
                transformation.getStateKeyType(),
                context);
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
 protected Collection<Integer> translateInternal(
            final Transformation<OUT> transformation,
            final StreamOperatorFactory<OUT> operatorFactory,
            final TypeInformation<IN> inputType,
            @Nullable final KeySelector<IN, ?> stateKeySelector,
            @Nullable final TypeInformation<?> stateKeyType,
            final Context context) {
        checkNotNull(transformation);
        checkNotNull(operatorFactory);
        checkNotNull(inputType);
        checkNotNull(context);

        final StreamGraph streamGraph = context.getStreamGraph();
        final String slotSharingGroup = context.getSlotSharingGroup();
        final int transformationId = transformation.getId();
        final ExecutionConfig executionConfig = streamGraph.getExecutionConfig();
		// StreamGraph端会添加一个StreamNode
        streamGraph.addOperator(
                transformationId,
                slotSharingGroup,
                transformation.getCoLocationGroupKey(),
                operatorFactory,
                inputType,
                transformation.getOutputType(),
                transformation.getName());

        if (stateKeySelector != null) {
            TypeSerializer<?> keySerializer = stateKeyType.createSerializer(executionConfig);
            streamGraph.setOneInputStateKey(transformationId, stateKeySelector, keySerializer);
        }

        int parallelism =
                transformation.getParallelism() != ExecutionConfig.PARALLELISM_DEFAULT
                        ? transformation.getParallelism()
                        : executionConfig.getParallelism();
        streamGraph.setParallelism(
                transformationId, parallelism, transformation.isParallelismConfigured());
        streamGraph.setMaxParallelism(transformationId, transformation.getMaxParallelism());
		// 获取所有的输入
        final List<Transformation<?>> parentTransformations = transformation.getInputs();
        checkState(
                parentTransformations.size() == 1,
                "Expected exactly one input transformation but found "
                        + parentTransformations.size());
		// 设置当前StreamNode和上游所有StreamNode之间的StreamEdge
        for (Integer inputId : context.getStreamNodeIds(parentTransformations.get(0))) {
        	// 设置StreamGraph的边
        	// transformationId 当前顶点的ID,inputId为上游顶点的ID
            streamGraph.addEdge(inputId, transformationId, 0);
        }

        if (transformation instanceof PhysicalTransformation) {
            streamGraph.setSupportsConcurrentExecutionAttempts(
                    transformationId,
                    ((PhysicalTransformation<OUT>) transformation)
                            .isSupportsConcurrentExecutionAttempts());
        }

        return Collections.singleton(transformationId);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60

1
总结:先调用StreamGraph.addOpertor将当前这个transform转换为StreamNode并添加到StreamGraph内。
然后获取当前transform的所有上游输入的节点的id,通过StreamGraph.addEdge来构建StreamEdge,并将StreamEdge添加到StreamGraph中。

进入StreamGraph.addOperator()方法查看转换成StreamNode并添加到StreamGraph的具体实现。

 public <IN, OUT> void addOperator(
            Integer vertexID,
            @Nullable String slotSharingGroup,
            @Nullable String coLocationGroup,
            StreamOperatorFactory<OUT> operatorFactory,
            TypeInformation<IN> inTypeInfo,
            TypeInformation<OUT> outTypeInfo,
            String operatorName) {
            // 这里会判断invoke的类型 是SourceStreamTask 还是OneinputStreamTask
         	// 三元表达式判断的结果 	  
           // invokableClass class org.apache.flink.streaming.runtime.tasks.OneInputStreamTask
        Class<? extends TaskInvokable> invokableClass =
                operatorFactory.isStreamSource()
                        ? SourceStreamTask.class
                        : OneInputStreamTask.class;
         // 进入addOperator方法 查看addNode的具体实现逻辑               
        addOperator(
                vertexID,
                slotSharingGroup,
                coLocationGroup,
                operatorFactory,
                inTypeInfo,
                outTypeInfo,
                operatorName,
                invokableClass);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

addNode
如上图所示:addNode()方法
1、首先它new StreamNode() 对于每一个StreamOperator初始化了一个StreamNode
2、StreamNode.puts() 将该StreamNode加入到StreamGraph中,算子处理逻辑userfuction–>StreamOperator–>transformation–>StreamNode
在构建StreamNode的时候会判断InvokableClass事件,判断是否是Source算子如果是则为SourceStreamTask 如果不是则为OneInputStreamTask
至此addNode已经转换完成。

StreamGraph.addEdge()
addEdge
在这里插入图片描述
进入addEdgeInternal()

private void addEdgeInternal(
            Integer upStreamVertexID,
            Integer downStreamVertexID,
            int typeNumber,
            StreamPartitioner<?> partitioner,
            List<String> outputNames,
            OutputTag outputTag,
            StreamExchangeMode exchangeMode,
            IntermediateDataSetID intermediateDataSetId) {

        if (virtualSideOutputNodes.containsKey(upStreamVertexID)) {
            int virtualId = upStreamVertexID;
            upStreamVertexID = virtualSideOutputNodes.get(virtualId).f0;
            if (outputTag == null) {
                outputTag = virtualSideOutputNodes.get(virtualId).f1;
            }
            addEdgeInternal(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    null,
                    outputTag,
                    exchangeMode,
                    intermediateDataSetId);
        } else if (virtualPartitionNodes.containsKey(upStreamVertexID)) {
            int virtualId = upStreamVertexID;
            upStreamVertexID = virtualPartitionNodes.get(virtualId).f0;
            if (partitioner == null) {
                partitioner = virtualPartitionNodes.get(virtualId).f1;
            }
            exchangeMode = virtualPartitionNodes.get(virtualId).f2;
            addEdgeInternal(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    outputNames,
                    outputTag,
                    exchangeMode,
                    intermediateDataSetId);
        } else {
        // 进入createActualEdge()
            createActualEdge(
                    upStreamVertexID,
                    downStreamVertexID,
                    typeNumber,
                    partitioner,
                    outputTag,
                    exchangeMode,
                    intermediateDataSetId);
        }
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

在这里插入图片描述
在这里插入图片描述

private void createActualEdge(
            Integer upStreamVertexID,
            Integer downStreamVertexID,
            int typeNumber,
            StreamPartitioner<?> partitioner,
            OutputTag outputTag,
            StreamExchangeMode exchangeMode,
            IntermediateDataSetID intermediateDataSetId) {
         // 通过上游顶点拿到上游的StreamNodeId
        StreamNode upstreamNode = getStreamNode(upStreamVertexID);
        // 当前顶点的StreamNodeId对StreamEdge来说,该StreamNode为这条边的下游
        StreamNode downstreamNode = getStreamNode(downStreamVertexID);

        // If no partitioner was specified and the parallelism of upstream and downstream
        // operator matches use forward partitioning, use rebalance otherwise.
        /**
        如果上游的StreamNode和下游的StreamNode并行度一样则使用ForwardPartitioner
        如果上游StreamNode和下游StreamNode并行度不一样,则使用RebalancePartitioner
        */
        if (partitioner == null
                && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
            partitioner =
                    dynamic ? new ForwardForUnspecifiedPartitioner<>() : new ForwardPartitioner<>();
        } else if (partitioner == null) {
            partitioner = new RebalancePartitioner<Object>();
        }

        if (partitioner instanceof ForwardPartitioner) {
            if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
                if (partitioner instanceof ForwardForConsecutiveHashPartitioner) {
                    partitioner =
                            ((ForwardForConsecutiveHashPartitioner<?>) partitioner)
                                    .getHashPartitioner();
                } else {
                    throw new UnsupportedOperationException(
                            "Forward partitioning does not allow "
                                    + "change of parallelism. Upstream operation: "
                                    + upstreamNode
                                    + " parallelism: "
                                    + upstreamNode.getParallelism()
                                    + ", downstream operation: "
                                    + downstreamNode
                                    + " parallelism: "
                                    + downstreamNode.getParallelism()
                                    + " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
                }
            }
        }

        if (exchangeMode == null) {
            exchangeMode = StreamExchangeMode.UNDEFINED;
        }

        /**
         * Just make sure that {@link StreamEdge} connecting same nodes (for example as a result of
         * self unioning a {@link DataStream}) are distinct and unique. Otherwise it would be
         * difficult on the {@link StreamTask} to assign {@link RecordWriter}s to correct {@link
         * StreamEdge}.
         */
        int uniqueId = getStreamEdges(upstreamNode.getId(), downstreamNode.getId()).size();
		// 创建StreamEdge
        StreamEdge edge =
                new StreamEdge(
                        upstreamNode,
                        downstreamNode,
                        typeNumber,
                        partitioner,
                        outputTag,
                        exchangeMode,
                        uniqueId,
                        intermediateDataSetId);
		// 将当前的StreamEdge对象设置为上游StreamNode的输出边
        getStreamNode(edge.getSourceId()).addOutEdge(edge);
        
        // 将当前的StreamEdge对象设置为下游StreamNode的输入边
        getStreamNode(edge.getTargetId()).addInEdge(edge);
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77

总结:

在上面的过程中,首先根据用户调用的算子,生成StreamOperator,然后将StreamOperator转化为Transformation,最后再将Transformation转化为StreamNode,在StreamNode构建完成之后先将StreamNode放入StreamGraph对象,再根据StreamNode的类型以及上下游StreamNode的关系开始构建StreamEdge,构建完成后使用StreamEdge将上下游有输出输入关系的StreamNode连接起来,在所有的StreamEdge连接完成后,StreamGraph就构建完成了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/207427?site
推荐阅读
相关标签
  

闽ICP备14008679号