赞
踩
1. 损失函数的基础
- import torch
- from torch.nn import L1Loss
- from torch import nn
-
- inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
- targets = torch.tensor([1, 2, 5], dtype=torch.float32)
-
- inputs = torch.reshape(inputs, (1, 1, 1, 3))
- targets = torch.reshape(targets, (1, 1, 1, 3))
-
- loss_l1 = L1Loss(reduction='sum') #默认为mean
- result_l1 = loss_l1(inputs,targets)
-
- loos_mse = nn.MSELoss()
- result_mes = loos_mse(inputs, targets)
-
- print(result_l1, result_mes)
-
- x = torch.tensor([0.1,0.2,0.3])
- y = torch.tensor([1])
- x = torch.reshape(x,(1,3)) #(N,C)
- loss_cross = nn.CrossEntropyLoss() #注意输入输出的维度 多看官网
- result_cross = loss_cross(x,y)
- print(result_cross)
2. 损失函数的运用
- import torchvision
- from torch import nn
- from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
- from torch.utils.data import DataLoader
-
- dataset = torchvision.datasets.CIFAR10('./dataset',train=False, transform=torchvision.transforms.ToTensor())
- dataloader = DataLoader(dataset, batch_size=1)
-
-
- class Tudui(nn.Module):
- def __init__(self):
- super().__init__()
- self.model1 = Sequential(
- Conv2d(3, 32, 5, padding=2),
- MaxPool2d(kernel_size=2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
-
- def forward(self, x):
- x = self.model1(x)
- return x
-
- loss = nn.CrossEntropyLoss()
-
- tudui = Tudui()
-
- for data in dataloader:
- imgs, targets = data
- outputs = tudui(imgs)
- result_loss = loss(outputs, targets)
- print(result_loss)
-
- result_loss.backward() #梯度
- print('ok')
-
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。