Perpetuity: 永续年金,以固定的漂洗支付直到永远 A p = c / y A^p=c/y Ap=c/y
C-strips: 美国财政发售的零息债券,本息分离债权
Coupon effect: fairly priced bonds having same maturity, but having different yields.虽然价格相同,但是支付利息时间不同而导致yield不同,零息债券>Par rate>固定利息的收益率,因此yield并不是一个合适的定价工具
连续利率 d ( t ) = e − r c ( t ) t d(t) = e^{-r^c(t)t} d(t)=e−rc(t)t f c ( t ) = − d ′ ( t ) d ( t ) f^c(t) = -\frac{d'(t)}{d(t)} fc(t)=−d(t)d′(t)
半年连续复利: ( 1 + r ( t ) 2 ) 2 t = 1 / d ( t ) (1+\frac{r(t)}{2})^{2t} = 1/d(t) (1+2r(t))2t=1/d(t) ( 1 + f ( t ) 2 ) = d ( t − 0.5 ) t (1+\frac{f(t)}{2}) = \frac{d(t-0.5)}{t} (1+2f(t))=td(t−0.5)
平价利率:面值100的票据,半年按照simple rate得到的现金流计算的利率,是票据的实际价值利率 C ( T ) 2 ∑ t = 1 2 T d ( t / 2 ) + d ( T ) = 1 \frac{C(T)}{2} \sum_{t=1}^{2T} d(t/2) + d(T) = 1 2C(T)t=1∑2Td(t/2)+d(T)=1
定价 P = c 2 A ( T ) + d ( T ) P = \frac{c}{2}A(T) + d(T) P=2cA(T)+d(T)
与即期利率 P = c 2 [ 1 1 + r ^ ( 0.5 ) 2 + ⋯ + 1 ( 1 + r ^ ( T ) 2 ) 2 T ] + 1 ( 1 + r ^ ( T ) 2 ) 2 T P = \frac{c}{2} [\frac{1}{1+\frac{\hat{r}(0.5)}{2}} + \cdots + \frac{1}{(1+\frac{\hat{r}(T)}{2})^{2T}}] + \frac{1}{(1+\frac{\hat{r}(T)}{2})^{2T}} P=2c[1+2r^(0.5)1+⋯+(1+2r^(T))2T1]+(1+2r^(T))2T1
与远期利率 P = c 2 ∑ t 1 ∏ j ( 1 + f ( j ) 2 ) P = \frac{c}{2} \sum_t \frac{1}{\prod_j (1+\frac{f(j)}{2})} P=2ct∑∏j(1+2f(j))1
与平价利率(par rate) P = 1 + c − C ( T ) 2 A ( T ) P = 1+ \frac{c-C(T)}{2} A(T) P=1+2c−C(T)A(T)
与收益率(yield),注意:收益率是通过价格反推的 P = c 2 ∑ t 2 T 1 ( 1 + y 2 ) t + 1 ( 1 + y 2 ) 2 T P = \frac{c}{2} \sum_t^{2T}\frac{1}{(1+\frac{y}{2})^t} +\frac{1}{(1+\frac{y}{2})^{2T}} P=2ct∑2T(1+2y)t1+(1+2y)2T1
如果没到期的, τ \tau τ表示超过上一个付息日到下一个付息日的百分比: P = ( 1 + y 2 ) 1 − τ ( c 2 ∑ t 2 T 1 ( 1 + y 2 ) t + 1 ( 1 + y 2 ) 2 T ) P = (1+\frac{y}{2})^{1-\tau}(\frac{c}{2} \sum_t^{2T}\frac{1}{(1+\frac{y}{2})^t} +\frac{1}{(1+\frac{y}{2})^{2T}} ) P=(1+2y)1−τ(2ct∑2T(1+2y)t1+(1+