赞
踩
可以用PyTorch做加减乘除操作
import torch tensor_operation = torch.tensor([1,2,3]) print(tensor_operation) print(tensor_operation + 10) print(torch.add(tensor_operation, 10)) print(tensor_operation * 10) print(torch.multiply(tensor_operation, 10)) print(tensor_operation - 10) print(tensor_operation / 10) print(tensor_operation * tensor_operation) # 输出 0s tensor_operation = torch.tensor([1,2,3]) print(tensor_operation) print(tensor_operation + 10) print(torch.add(tensor_operation, 10)) print(tensor_operation * 10) print(torch.multiply(tensor_operation, 10)) print(tensor_operation - 10) tensor([1, 2, 3]) tensor([11, 12, 13]) tensor([11, 12, 13]) tensor([10, 20, 30]) tensor([10, 20, 30]) tensor([-9, -8, -7]) tensor([0.1000, 0.2000, 0.3000]) tensor([1, 4, 9])
One of the most common operations in machine learning and deep learning algorithms (like neural networks) is matrix multiplication.
做矩阵相乘的规则:
(3,2) * (3,2) => 不符合条件
(2,3) * (3,2) = (2,2)
(3,2) * (2,3) = (3,3)
在 PyTorch 里,可以使用 torch.matmul() 方法。
tensor_matrix = torch.tensor([1,2,3])
print(tensor_matrix * tensor_matrix)
print(torch.matmul(tensor_matrix, tensor_matrix))
print(tensor_matrix.matmul(tensor_matrix))
# 结果
tensor([1, 4, 9])
tensor(14)
tensor(14)
Operation | Calculation | Code |
---|---|---|
Element-wise multiplication | [11, 22, 3*3] = [1, 4, 9] | tensor * tensor |
Matrix multiplication | [11 + 22 + 3*3] = [14] | tensor.matmul(tensor) |
都看到这里了,给个赞咯~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。