赞
踩
想要完成一个个人轻量级微服务框架,负载均衡和接口安全都需要一个这样的工具来统计访问频率,那么就选择了一种比较传统的方式来实现,其他博客中有提供一些方式,但设计较为简单,不能满足我的需求,所以再起炉灶
概念上非常简单,就是给定一个数据结构列表,例如20个窗口,步长固定为1,长度为10,当index为11
时,该窗口范围为[1-11]
首先思考一下算法,我们大概需要几个参数【窗口个数、每个时间片时长、队列长度、每个时间片内允许授权个数(可选)】
/** * 时间窗滑块 * since 2019/12/8 * * @author eddie */ public class TimeWindowSliding { /** 队列的总长度 */ private volatile int timeSliceSize; /** 每个时间片的时长,以毫秒为单位 */ private volatile int timeMillisPerSlice; /** 当前所使用的时间片位置 */ private AtomicInteger cursor = new AtomicInteger(0); /** 在一个完整窗口期内允许通过的最大阈值 */ private int threshold; /** 窗口个数 */ private int windowSize; /** 最小每个时间片的时长,以毫秒为单位 */ private static final int MIN_TIME_MILLIS_PER_SLICE = 50; /** 最小窗口数量 */ private static final int DEFAULT_WINDOW_SIZE = 5; /** 数据存储 */ private TimeWindowSlidingDataSource timeWindowSlidingDataSource; public TimeWindowSliding(TimeWindowSlidingDataSource timeWindowSlidingDataSource, int windowSize, int timeMillisPerSlice, int threshold){ this.timeWindowSlidingDataSource = timeWindowSlidingDataSource; this.timeMillisPerSlice = timeMillisPerSlice; this.threshold = threshold; /* 低于一定窗口个数会丢失精准度 */ this.windowSize = Math.max(windowSize, DEFAULT_WINDOW_SIZE); /* 保证每个时间窗至少有2个窗口存储 不会重叠 */ this.timeSliceSize = this.windowSize * 2 + 1; /* 可以忽略这个操作 数据存储结构中定义的生命周期函数 如果接口有实现会调用 没有实现走默认实现直接return */ timeWindowSlidingDataSource.initTimeSlices(); /* 初始化参数校验 */ this.verifier(); }
初始化函数中包含了一个TimeWindowSlidingDataSource
,看下这个接口的定义
/** * 时间分配数据源 * since 2019/12/8 * * @author eddie */ public interface TimeWindowSlidingDataSource { /** * 记录通过记录 * @param timeSlices 时间分片 * @param recordKey 记录参数 * @throws TimeWindowSlidingDataSourceException 时间分片数据源操作异常 */ void allocAdoptRecord(int timeSlices, String recordKey) throws TimeWindowSlidingDataSourceException; /** * 获取<recordKey>通过次数 * @param timeSlices 时间分片 * @param recordKey 记录参数 * @return * @throws TimeWindowSlidingDataSourceException */ int getAllocAdoptRecordTimes(int timeSlices, String recordKey) throws TimeWindowSlidingDataSourceException; /** * 将fromIndex~toIndex之间的时间片计数清零 * @param fromIndex 起始索引 * @param toIndex 结束索引 * @param totalLength 窗口数量 * @throws TimeWindowSlidingDataSourceException 时间分片数据源操作异常 */ void clearBetween(int fromIndex, int toIndex, int totalLength) throws TimeWindowSlidingDataSourceException; /** * 将index时间片计数清零 * @param index 索引 * @throws TimeWindowSlidingDataSourceException */ void clearSingle(int index) throws TimeWindowSlidingDataSourceException; /** * 根据需求 可不使用该函数 该函数会在初始化阶段调用一次 * @throws TimeWindowSlidingDataSourceException 时间分片数据源操作异常 */ default void initTimeSlices() throws TimeWindowSlidingDataSourceException {} static TimeWindowSlidingDataSource defaultDataSource() { return new TimeWindowSlidingDataSource() { private Map<String, Map<String,Integer>> timeWindowSlidingMap = new ConcurrentHashMap<>(16); @Override public void allocAdoptRecord(int timeSlices, String recordKey) throws TimeWindowSlidingDataSourceException { Map<String, Integer> timeSlicesMap = timeWindowSlidingMap.get(String.valueOf(timeSlices)); if (Objects.isNull(timeSlicesMap)){ timeSlicesMap = new ConcurrentHashMap<>(16); timeWindowSlidingMap.put(String.valueOf(timeSlices), timeSlicesMap); } Integer adoptTimes = timeSlicesMap.get(recordKey); int nextTimes = adoptTimes == null ? 0 : adoptTimes; timeSlicesMap.put(recordKey, ++ nextTimes); } @Override public int getAllocAdoptRecordTimes(int timeSlices, String recordKey) throws TimeWindowSlidingDataSourceException { Map<String, Integer> timeSlicesMap = timeWindowSlidingMap.get(String.valueOf(timeSlices)); if (Objects.isNull(timeSlicesMap)){ return 0; } Integer recordTimes = timeSlicesMap.get(recordKey); return Objects.isNull(recordTimes) ? 0 : recordTimes; } @Override public void clearBetween(int fromIndex, int toIndex, int totalLength) throws TimeWindowSlidingDataSourceException { if (fromIndex >= toIndex){ toIndex += totalLength; } while (fromIndex <= toIndex) { Map<String, Integer> timeWindowSlidingScopeMap = timeWindowSlidingMap.get(String.valueOf(fromIndex)); if (!Objects.isNull(timeWindowSlidingScopeMap) && timeWindowSlidingScopeMap.size() > 0){ timeWindowSlidingScopeMap.clear(); } fromIndex++; } } @Override public void clearSingle(int index) throws TimeWindowSlidingDataSourceException { Map<String, Integer> timeWindowSlidingScopeMap = timeWindowSlidingMap.get(String.valueOf(index)); if (!Objects.isNull(timeWindowSlidingScopeMap) && timeWindowSlidingScopeMap.size() > 0){ timeWindowSlidingScopeMap.clear(); } } }; } }
这个类其实就是一个约定,默认提供了一个基于HashMap
的实现,我需要统计单用户访问接口频率,所以,数据结构采用HashMap,也就是说相当于有一个List<Map<String,Integer>>的结构,但因为习惯问题,我才用了Map<String, Map<String,Integer>>
的结构。
但这个无所谓,因为出于场景考虑,大概率是要支持分布式的,那就需要引入redis
,可这是一个工具包,因为这个工具就引入一个redis
的包不太划算,所以定义了这么一个约定接口,不管你用什么存储,memchche
,redis
,mangodb
,只要实现了这几个方法,传入工具中就能完成对应的功能,算是一个变形的策略模式
这些参数都初始化好之后,看下算法的部分,提供三个接口:
/** * 判断是否允许进行访问,未超过阈值的话才会对某个时间片+1 */ public boolean allowLimitTimes(String key) { int index = locationIndex(); int sum = 0; // cursor不等于index,将cursor设置为index int oldCursor = cursor.getAndSet(index); if (oldCursor != index) { // 清零,访问量不大时会有时间片跳跃的情况 clearBetween(oldCursor, index); } for (int i = 1; i < timeSliceSize; i++) { sum += timeWindowSlidingDataSource.getAllocAdoptRecordTimes(i, key); } // 阈值判断 if (sum <= threshold) { // 未超过阈值才+1 this.timeWindowSlidingDataSource.allocAdoptRecord(index, key); return true; } return false; } /** * 返回平均每秒访问次数 */ public int allowNotLimitPerMin(String key) { int index = locationIndex(); int sum = 0; int nextIndex = index + 1; this.timeWindowSlidingDataSource.clearSingle(nextIndex); int from = index, to = index; if (index < windowSize) { from += windowSize + 1; to += 2 * windowSize; }else { from = index - windowSize + 1; } while (from <= to){ int targetIndex = from; if (from >= timeSliceSize) { targetIndex = from - 2 * windowSize; } sum += timeWindowSlidingDataSource.getAllocAdoptRecordTimes(targetIndex, key); from ++; } this.timeWindowSlidingDataSource.allocAdoptRecord(index, key); return (sum + 1) / windowSize; } /** * 返回每秒访问次数 */ public int allowNotLimit(String key) { int index = locationIndex(); int sum = 0; // cursor不等于index,将cursor设置为index int oldCursor = cursor.getAndSet(index); if (oldCursor != index) { // 清零,访问量不大时会有时间片跳跃的情况 clearBetween(oldCursor, index); } for (int i = 0; i <= timeSliceSize; i++) { sum += timeWindowSlidingDataSource.getAllocAdoptRecordTimes(i, key); } this.timeWindowSlidingDataSource.allocAdoptRecord(index, key); return sum + 1; } /** * <p>将fromIndex~toIndex之间的时间片计数都清零 * <p>极端情况下,当循环队列已经走了超过1个timeSliceSize以上,这里的清零并不能如期望的进行 */ private void clearBetween(int fromIndex, int toIndex) { this.timeWindowSlidingDataSource.clearBetween(fromIndex, toIndex, timeSliceSize); } private int locationIndex() { long time = System.currentTimeMillis(); return (int) ((time / timeMillisPerSlice) % timeSliceSize); }
演示结果就不给大家展示了,刚把一大堆log去掉,如果有更好的办法欢迎给我留言,或者github协作,该项目github地址,对应实现在com.el.common.time.sliding
包下
另外
感谢博主: tianyaleixiaowu提供的基础思路
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。