赞
踩
首先,解压下载好的官方源码,先看文件结构中的data目录,其中,Annotations放XML,images放原图,JPEGImages放原图,如图:
放好数据后,用makeTxt.py代码在ImageSets下生成txt文件,。代码如下:
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
生成后的文件,如图:
然后用voc_label.py,在labels文件夹中生成txt文件,在data目录下生成txt,代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ["fire", "smoke"]
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id), 'r', encoding="UTF-8")
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('G:/yolov5-master/data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
voc_label.py倒数第三行的路径最好是绝对路径,生成后的效果,如图:
制作data.yaml,设置自己的路径,标签种类及类别数量,如下:
train: ./train.txt
val: ./val.txt
nc: 3
names: ['red_light', 'green_light', 'yellow_light']
进入自己的环境,输入训练命令:
python train.py --weights '' --cfg cfg/training/yolov7.yaml --data data.yaml --epochs 500
我这里使用的是yolov7.yaml,根据自己的需要来选择,迭代次数也是根据自己的需要来输入。
输入测试命令:
python detect.py --weights runs/train/exp/weights/best.pt --source test/exp --project test/test1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。