赞
踩
查看:
x = np.array([1, 2, 9, 4, 5, 6, 7, 8])
print(x.shape) # (8,)
修改:
x.shape = [2, 4]
print(x)
# [[1 2 9 4]
# [5 6 7 8]]
通过numpy.ndarray.flat获取数组的以为迭代器后即可完成通过for等操作遍历数组或修改数组等
for循环遍历数组:
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = x.flat
print(y)
# <numpy.flatiter object at 0x0000020F9BA10C60>
for i in y:
print(i, end=' ')
# 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
通过迭代器修改数组:
y[3] = 0
print(end='\n')
print(x)
# [[11 12 13 0 15]
# [16 17 18 19 20]
# [21 22 23 24 25]
# [26 27 28 29 30]
# [31 32 33 34 35]]
order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序
x = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30], [31, 32, 33, 34, 35]]) y = x.flatten() print(y) # [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 # 35] y[3] = 0 print(x) # [[11 12 13 14 15] # [16 17 18 19 20] # [21 22 23 24 25] # [26 27 28 29 30] # [31 32 33 34 35]] x = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30], [31, 32, 33, 34, 35]]) y = x.flatten(order='F') print(y) # [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30 # 35] y[3] = 0 print(x) # [[11 12 13 14 15] # [16 17 18 19 20] # [21 22 23 24 25] # [26 27 28 29 30] # [31 32 33 34 35]]
order=‘C’
x = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30], [31, 32, 33, 34, 35]]) y = np.ravel(x) print(y) # [11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 # 35] y[3] = 0 print(x) # [[11 12 13 0 15] # [16 17 18 19 20] # [21 22 23 24 25] # [26 27 28 29 30] # [31 32 33 34 35]]
order=‘F’
x = np.array([[11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], [26, 27, 28, 29, 30], [31, 32, 33, 34, 35]]) y = np.ravel(x, order='F') print(y) # [11 16 21 26 31 12 17 22 27 32 13 18 23 28 33 14 19 24 29 34 15 20 25 30 # 35] y[3] = 0 print(x) # [[11 12 13 14 15] # [16 17 18 19 20] # [21 22 23 24 25] # [26 27 28 29 30] # [31 32 33 34 35]]
reshape()函数当参数newshape = [rows,-1]时,将根据行数自动确定列数
x = np.arange(12) y = np.reshape(x, [3, 4]) print(y.dtype) # int32 print(y) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] y = np.reshape(x, [3, -1]) print(y) # [[ 0 1 2 3] # [ 4 5 6 7] # [ 8 9 10 11]] y = np.reshape(x,[-1,3]) print(y) # [[ 0 1 2] # [ 3 4 5] # [ 6 7 8] # [ 9 10 11]]
当参数newshape = -1时,表示将数组降为一维
x = np.random.randint(12, size=[2, 2, 3])
print(x)
# [[[11 9 1]
# [ 1 10 3]]
#
# [[ 0 6 1]
# [ 4 11 3]]]
y = np.reshape(x, -1)
print(y)
# [11 9 1 1 10 3 0 6 1 4 11 3]
x = np.random.rand(5, 5) * 10
x = np.around(x, 2)
print(x)
# [[6.74 8.46 6.74 5.45 1.25]
# [3.54 3.49 8.62 1.94 9.92]
# [5.03 7.22 1.6 8.7 0.43]
# [7.5 7.31 5.69 9.67 7.65]
# [1.8 9.52 2.78 5.87 4.14]]
y = x.T
print(y)
# [[6.74 3.54 5.03 7.5 1.8 ]
# [8.46 3.49 7.22 7.31 9.52]
# [6.74 8.62 1.6 5.69 2.78]
# [5.45 1.94 8.7 9.67 5.87]
# [1.25 9.92 0.43 7.65 4.14]]
y = np.transpose(x)
print(y)
# [[6.74 3.54 5.03 7.5 1.8 ]
# [8.46 3.49 7.22 7.31 9.52]
# [6.74 8.62 1.6 5.69 2.78]
# [5.45 1.94 8.7 9.67 5.87]
# [1.25 9.92 0.43 7.65 4.14]]
x = np.array([1, 2, 9, 4, 5, 6, 7, 8]) print(x.shape) # (8,) print(x) # [1 2 9 4 5 6 7 8] y = x[np.newaxis, :] print(y.shape) # (1, 8) print(y) # [[1 2 9 4 5 6 7 8]] y = x[:, np.newaxis] print(y.shape) # (8, 1) print(y) # [[1] # [2] # [9] # [4] # [5] # [6] # [7] # [8]]
numpy.squeeze(a, axis=None) 从数组的形状中删除单维度条目,即把shape中为1的维度去掉。
a表示输入的数组;
axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
x = np.array([[[0], [1], [2]]]) print(x.shape) # (1, 3, 1) print(x) # [[[0] # [1] # [2]]] y = np.squeeze(x) print(y.shape) # (3,) print(y) # [0 1 2] y = np.squeeze(x, axis=0) print(y.shape) # (3, 1) print(y) # [[0] # [1] # [2]] y = np.squeeze(x, axis=2) print(y.shape) # (1, 3) print(y) # [[0 1 2]] y = np.squeeze(x, axis=1) # ValueError: cannot select an axis to squeeze out which has size not equal to one
x,y在原来的维度上进行拼接:
x = np.array([1, 2, 3]) y = np.array([7, 8, 9]) z = np.concatenate([x, y]) print(z) # [1 2 3 7 8 9] z = np.concatenate([x, y], axis=0) print(z) # [1 2 3 7 8 9] x = np.array([1, 2, 3]).reshape(1, 3) y = np.array([7, 8, 9]).reshape(1, 3) z = np.concatenate([x, y]) print(z) # [[ 1 2 3] # [ 7 8 9]] z = np.concatenate([x, y], axis=0) print(z) # [[ 1 2 3] # [ 7 8 9]] z = np.concatenate([x, y], axis=1) print(z) # [[ 1 2 3 7 8 9]]
x = np.array([1, 2, 3]).reshape(1, 3) y = np.array([7, 8, 9]).reshape(1, 3) z = np.stack([x, y]) print(z.shape) # (2, 1, 3) print(z) # [[[1 2 3]] # # [[7 8 9]]] z = np.stack([x, y], axis=1) print(z.shape) # (1, 2, 3) print(z) # [[[1 2 3] # [7 8 9]]] z = np.stack([x, y], axis=2) print(z.shape) # (1, 3, 2) print(z) # [[[1 7] # [2 8] # [3 9]]]
numpy.vstack(tup) -> numpy.stack(arrays, axis=0)
numpy.hstack(tup) -> numpy.stack(arrays, axis=1)
x = np.array([1, 2, 3]).reshape(1, 3) y = np.array([7, 8, 9]).reshape(1, 3) z = np.vstack((x, y)) print(z.shape) # (2, 3) print(z) # [[1 2 3] # [7 8 9]] z = np.concatenate((x, y), axis=0) print(z.shape) # (2, 3) print(z) # [[1 2 3] # [7 8 9]] z = np.hstack((x, y)) print(z.shape) # (1, 6) print(z) # [[ 1 2 3 7 8 9]] z = np.concatenate((x, y), axis=1) print(z.shape) # (1, 6) print(z) # [[1 2 3 7 8 9]]
numpy.split(ary, indices_or_sections, axis=0) Split an array into multiple sub-arrays as views into ary.
x = np.array([[11, 12, 13, 14], [16, 17, 18, 19], [21, 22, 23, 24]]) y = np.split(x, [1, 3]) print(y) # [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19], # [21, 22, 23, 24]]), array([], shape=(0, 4), dtype=int32)] y = np.split(x, [1, 3], axis=1) print(y) # [array([[11], # [16], # [21]]), array([[12, 13], # [17, 18], # [22, 23]]), array([[14], # [19], # [24]])]
vsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=0)
hsplit(ary, indices_or_sections) -> numpy.split(ary, indices_or_sections, axis=1)
x = np.array([[11, 12, 13, 14], [16, 17, 18, 19], [21, 22, 23, 24]]) y = np.vsplit(x, 3) print(y) # [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])] y = np.split(x, 3) print(y) # [array([[11, 12, 13, 14]]), array([[16, 17, 18, 19]]), array([[21, 22, 23, 24]])] x = np.array([[11, 12, 13, 14], [16, 17, 18, 19], [21, 22, 23, 24]]) y = np.hsplit(x, 2) print(y) # [array([[11, 12], # [16, 17], # [21, 22]]), array([[13, 14], # [18, 19], # [23, 24]])] y = np.split(x, 2, axis=1) print(y) # [array([[11, 12], # [16, 17], # [21, 22]]), array([[13, 14], # [18, 19], # [23, 24]])]
Construct an array by repeating A the number of times given by reps.
根据reps矩阵来对指定维度复制的次数
x = np.array([[1, 2], [3, 4]]) print(x) # [[1 2] # [3 4]] y = np.tile(x, (1, 3)) print(y) # [[1 2 1 2 1 2] # [3 4 3 4 3 4]] y = np.tile(x, (3, 1)) print(y) # [[1 2] # [3 4] # [1 2] # [3 4] # [1 2] # [3 4]] y = np.tile(x, (3, 3)) print(y) # [[1 2 1 2 1 2] # [3 4 3 4 3 4] # [1 2 1 2 1 2] # [3 4 3 4 3 4] # [1 2 1 2 1 2] # [3 4 3 4 3 4]]
numpy.repeat(a, repeats, axis=None) Repeat elements of an array.
x = np.repeat(3, 4) print(x) # [3 3 3 3] x = np.array([[1, 2], [3, 4]]) y = np.repeat(x, 2) print(y) # [1 1 2 2 3 3 4 4] y = np.repeat(x, 2, axis=0) print(y) # [[1 2] # [1 2] # [3 4] # [3 4]] y = np.repeat(x, 2, axis=1) print(y) # [[1 1 2 2] # [3 3 4 4]] y = np.repeat(x, [2, 3], axis=0) print(y) # [[1 2] # [1 2] # [3 4] # [3 4] # [3 4]] y = np.repeat(x, [2, 3], axis=1) print(y) # [[1 1 2 2 2] # [3 3 4 4 4]]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。