当前位置:   article > 正文

线性变换(2)——特征值与特征向量_线性变换的特征值

线性变换的特征值

前情提要:

gif.latex?V%3DL%28%5Calpha_%7B1%7D%29%5Coplus%20...%5Coplus%20L%28%5Calpha_%7Bn%7D%29gif.latex?%5Calpha_%7B1%7D%2C...%2C%5Calpha_%7Bn%7D%5Cleft%20%28%201%20%5Cright%20%29gif.latex?V%5E%7BF%7D 的一个基,则

gif.latex?L%28%5Calpha_%7Bi%7D%29gif.latex?%5Csigma-子空间gif.latex?%5CLeftrightarrowgif.latex?%5Csigma在(1)下的矩阵为对角阵

 特征值与特征向量


1.定义:gif.latex?%5Csigma%20%5Cin%20L%28V%5E%7BF%7D%29%2C%5Clambda%20%5Cin%20F%2C0%5Cneq%20%5Calpha%20%5Cin%20V%5E%7BF%7D ,若 gif.latex?%5Csigma%28%5Calpha%29%3D%5Clambda%20%5Calpha ,则称gif.latex?%5Clambdagif.latex?%5Csigma的一个特征值,gif.latex?%5Calphagif.latex?%5Csigma的属于特征值gif.latex?%5Clambda的一个特征向量

 例一:gif.latex?%5Csigma%20%5Cin%20L%28V%5E%7BF%7D%29%2C%5Cforall%20%5Calpha%20%5Cin%20V%5E%7BF%7D%2C%5Csigma%28%5Calpha%29%3Dk%5Calpha%2Ck%5Cin%20F

gif.latex?%5Csigma一定有特征值k,gif.latex?V%5E%7BF%7D中任一非零向量都是属于k的特征向量           

例二:gif.latex?%5Csigma%28f%28x%29%29%3Dxf%28x%29%2Cf%28x%29%5Cin%20F%5Bx%5D%2C%5Csigma%20%5Cin%20L%28F%5Bx%5D%29

无特征值

2.性质:

1)一个特征向量只属于一个特征值,一个特征值可对于无穷多个特征向量

2)gif.latex?0%5Cneq%20%5Clambdagif.latex?%5Csigma的特征值,gif.latex?%5Csigma可逆,则gif.latex?%5Cfrac%7B1%7D%7B%5Clambda%7Dgif.latex?%5Csigma%5E%7B-1%7D 的特征值

3)gif.latex?%5Clambdagif.latex?%5Csigma的特征值,gif.latex?f%28x%29%5Cin%20F%5Bx%5Dgif.latex?f%28%5Clambda%29gif.latex?f%28%5Csigma%29 的一个特征值

4)gif.latex?%5Cxi生成一维gif.latex?%5Csigma-子空间gif.latex?%5CLeftrightarrowgif.latex?%5Cxigif.latex?%5Csigma的特征向量

5)gif.latex?V_%7B%5Clambda%7D%3D%5Cleft%20%5C%7B%20%5Calpha%20%5Cin%20V_%7BF%7D%5Cmid%20%5Csigma%28%5Calpha%29%3D%5Clambda%20%5Calpha%20%5Cright%20%5C%7D 是 gif.latex?%5Csigma-子空间

 


特征值与特征向量的求法

  1. gif.latex?%5Csigmagif.latex?%5Calpha_%7B1%7D%2C...%2C%5Calpha_%7Bn%7D%5Cleft%20%28%201%20%5Cright%20%29下的矩阵A
  2. 求特征方程gif.latex?%5Cleft%20%7C%20%5Clambda%20I-A%20%5Cright%20%7C%3D0 的解,即求得gif.latex?%5Csigma的特征值
  3. 解齐次线性方程组gif.latex?%28%5Clambda%20I-A%29X%3D0 的解空间的一个基,即解得 的属于特征值gif.latex?%5Clambda的一个特征向量在(1)的坐标,即得gif.latex?%5Csigma的属于gif.latex?%5Clambda的全部特征向量

例1: gif.latex?%5Csigma%20%5Cin%20L%28F_%7Bn%7D%5Bx%5D%29%2C%5Csigma%3Af%28x%29%5Crightarrow%20f%7B%7D%27%28x%29

 求gif.latex?%5Csigma的特征值和特征向量

gif.latex?F_%7Bn%7D%5Bx%5D 的一个基:gif.latex?1%2Cx%2C...%2Cx%5E%7Bn%7D

gif.latex?A%3D%5Cbegin%7Bpmatrix%7D%200%20%26%201%20%26%200%20%26%200%20%26%200%5C%5C%200%20%26%200%26%202%20%26%200%20%26%200%5C%5C%200%20%26%200%20%26%200%20%26%20...%20%26%200%5C%5C%200%26%200%20%26%200%20%260%20%26%20n%5C%5C%200%20%26%200%20%26%200%20%26%200%20%260%20%5Cend%7Bpmatrix%7D

gif.latex?%5Cbegin%7Bvmatrix%7D%20%5Clambda%26%20-1%20%26%200%26%200%20%260%20%5C%5C%200%20%26%20%5Clambda%20%26%20-2%20%26%200%20%260%20%5C%5C%200%20%26%200%20%26%20%5Clambda%20%26%20...%260%20%5C%5C%200%20%26%200%20%26%200%20%26%20...%26%20-n%5C%5C%200%20%26%200%26%200%20%26%200%20%26%20%5Clambda%20%5Cend%7Bvmatrix%7D%3D%5Clambda%20%5E%7Bn+1%7D%3D0

gif.latex?%5CRightarrow%20%5Clambda_%7B1%7D%3D...%3D%5Clambda_%7Bn%7D%20%3D0

基础解系(1,0,...,0)

特征向量为1

全体特征向量为k(属于0),其中k为F中任意的非零数

ex1. 已知 gif.latex?%5Csigma%20%5Cin%20L%28%5Cmathbb%7BR%7D%5E%7B3%7D%29%2C%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Calpha_%7B3%7D%281%29gif.latex?%5Cmathbb%7BR%7D%5E%7B3%7D的一个基

gif.latex?%5Csigma在(1)下的矩阵为

gif.latex?A%3D%5Cbegin%7Bpmatrix%7D%203%20%26%203%20%26%202%5C%5C%201%20%26%201%20%26%20-2%5C%5C%20-3%20%26%201%20%26%200%20%5Cend%7Bpmatrix%7D

gif.latex?%5Csigma的特征值和特征向量


 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETkB6ZWRreXg,size_20,color_FFFFFF,t_70,g_se,x_16

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETkB6ZWRreXg,size_20,color_FFFFFF,t_70,g_se,x_16 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETkB6ZWRreXg,size_20,color_FFFFFF,t_70,g_se,x_16 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETkB6ZWRreXg,size_20,color_FFFFFF,t_70,g_se,x_16 

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETkB6ZWRreXg,size_20,color_FFFFFF,t_70,g_se,x_16 

 

 

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/320270
推荐阅读
相关标签
  

闽ICP备14008679号