赞
踩
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
path = 'E:/nlp课件/test_data/temps.csv'
features = pd.read_csv(path)
features.head()
year | month | day | week | temp_2 | temp_1 | average | actual | friend | |
---|---|---|---|---|---|---|---|---|---|
0 | 2016 | 1 | 1 | Fri | 45 | 45 | 45.6 | 45 | 29 |
1 | 2016 | 1 | 2 | Sat | 44 | 45 | 45.7 | 44 | 61 |
2 | 2016 | 1 | 3 | Sun | 45 | 44 | 45.8 | 41 | 56 |
3 | 2016 | 1 | 4 | Mon | 44 | 41 | 45.9 | 40 | 53 |
4 | 2016 | 1 | 5 | Tues | 41 | 40 | 46.0 | 44 | 41 |
print('数据维度:', features.shape)
数据维度: (348, 9)
# 处理时间
years = features['year']
month = features['month']
day = features['day']
dates = [str(int(years)) + '-' + str(int(month)) + '-' + str(int(day)) for years, month, day in zip(years, month, day)]
from datetime import datetime
dates = [datetime.strptime(date, '%Y-%m-%d') for date in dates]
dates[:5]
[datetime.datetime(2016, 1, 1, 0, 0),
datetime.datetime(2016, 1, 2, 0, 0),
datetime.datetime(2016, 1, 3, 0, 0),
datetime.datetime(2016, 1, 4, 0, 0),
datetime.datetime(2016, 1, 5, 0, 0)]
# 生成图像 # 默认风格 plt.style.use('fivethirtyeight') # 设置布局 fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows = 2, ncols = 2, figsize = (10,10)) fig.autofmt_xdate(rotation = 45) # 标签值 ax1.plot(dates, features['actual']) ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp') # 昨天 ax2.plot(dates, features['temp_1']) ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp') # 前天 ax3.plot(dates, features['temp_2']) ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp') # 我的逗逼朋友 ax4.plot(dates, features['friend']) ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate') plt.tight_layout(pad=2)
# one-hot
features = pd.get_dummies(features)
features[:5]
year | month | day | temp_2 | temp_1 | average | actual | friend | week_Fri | week_Mon | week_Sat | week_Sun | week_Thurs | week_Tues | week_Wed | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2016 | 1 | 1 | 45 | 45 | 45.6 | 45 | 29 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 2016 | 1 | 2 | 44 | 45 | 45.7 | 44 | 61 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2 | 2016 | 1 | 3 | 45 | 44 | 45.8 | 41 | 56 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
3 | 2016 | 1 | 4 | 44 | 41 | 45.9 | 40 | 53 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
4 | 2016 | 1 | 5 | 41 | 40 | 46.0 | 44 | 41 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
# 目标值
labels = np.array(features['actual'])
# 在特征之中去掉标签
features = features.drop('actual', axis = 1)
# 保存列名
features_list = list(features.columns)
# 转换格式
features = np.array(features)
features.shape
(348, 14)
from sklearn.preprocessing import StandardScaler
input_features = StandardScaler().fit_transform(features)
input_features[0]
array([ 0. , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,
-1.3470703 , -1.98891668, 2.44131112, -0.40482045, -0.40961596,
-0.40482045, -0.40482045, -0.41913682, -0.40482045])
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
# 权重参数初始化 [348,14] * [14, 128] * [128] * [128, 1] * [1]
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
learning_rate = 0.001
losses = []
for i in range(1000): # 计算隐层 hidden = x.mm(weights) + biases # 激活函数 hidden = torch.relu(hidden) # 预测结果 predictions = hidden.mm(weights2) + biases2 # 计算损失 - MSE loss = torch.mean((predictions - y)**2) losses.append(loss.data.numpy) # 打印损失 if i % 100 == 0: print('loss:', loss) # 反向传播 loss.backward() # 更新参数 weights.data.add_(- learning_rate * weights.grad.data) biases.data.add_(- learning_rate * biases.grad.data) weights2.data.add_(- learning_rate * weights2) biases2.data.add_(- learning_rate * biases2) # 更新后梯度置0,否则会累加 weights.grad.data.zero_() biases.grad.data.zero_() weights2.grad.data.zero_() biases2.grad.data.zero_()
loss: tensor(4769.2916, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(168.6445, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(152.0681, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(147.8071, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.4026, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(146.3492, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(147.1898, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(148.8380, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(151.3747, dtype=torch.float64, grad_fn=<MeanBackward0>)
loss: tensor(154.9829, dtype=torch.float64, grad_fn=<MeanBackward0>)
import torch.nn as nn
from torch.optim import Adam
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = nn.Sequential(
nn.Linear(input_size, hidden_size),
nn.Sigmoid(),
nn.Linear(hidden_size, output_size)
)
cost = nn.MSELoss(reduction= 'mean')
optimizer = Adam(my_nn.parameters(), lr = learning_rate)
# 训练网络 losses = [] for i in range(1000): batch_loss = [] # mini_batch 方式进行训练 for start in range(0, len(input_features), batch_size): end = start + batch_size if batch_size + start < len(input_features) else len(input_features) xx = torch.tensor(input_features[start : end], dtype = torch.float, requires_grad = True) yy = torch.tensor(labels[start : end], dtype = torch.float, requires_grad = True) # 前向传播 predictions = my_nn(xx) # 计算损失 loss = cost(predictions, yy) # 梯度置0 optimizer.zero_grad() # 反向传播 loss.backward(retain_graph = True) # 更新参数 optimizer.step() batch_loss.append(loss.data.numpy()) # 打印损失 if i % 100 == 0: losses.append(np.mean(batch_loss)) print(i, np.mean(batch_loss))
0 3980.642
100 37.847748
200 35.684933
300 35.318283
400 35.14371
500 35.006382
600 34.884396
700 34.761875
800 34.633102
900 34.49755
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式 dates = [str(int(years)) + '-' + str(int(month)) + '-' + str(int(day)) for years, month, day in zip(years, month, day)] dates = [datetime.strptime(date, '%Y-%m-%d') for date in dates] # 创建一个表格来存日期和其对应的标签数值 true_data = pd.DataFrame(data = {'date': dates, 'actual': labels}) # 同理,再创建一个来存日期和其对应的模型预测值 months = features[:, features_list.index('month')] days = features[:, features_list.index('day')] years = features[:, features_list.index('year')] test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)] test_dates = [datetime.strptime(date, '%Y-%m-%d') for date in test_dates] predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()
# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。