当前位置:   article > 正文

【小沐学NLP】Python实现K-Means聚类算法(nltk、sklearn)_kmean聚类python sklearn

kmean聚类python sklearn

1、简介

1.1 机器学习

  • 机器学习三要素:包括数据、模型、算法
  • 机器学习三大任务方向:分类、回归、聚类
  • 机器学习三大类训练方法:监督学习、非监督学习、强化学习
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

1.2 K 均值聚类

1.2.1 聚类定义

聚类是一种无监督学习任务,该算法基于数据的内部结构寻找观察样本的自然族群(即集群)。使用案例包括细分客户、新闻聚类、文章推荐等。
因为聚类是一种无监督学习(即数据没有标注),并且通常使用数据可视化评价结果。如果存在「正确的回答」(即在训练集中存在预标注的集群),那么分类算法可能更加合适。

依据算法原理,聚类算法可以分为基于划分的聚类算法(比如 K-means)、基于密度的聚类算法(比如DBSCAN)、基于层次的聚类算法(比如HC)和基于模型的聚类算法(比如HMM)。

1.2.2 K-Means定义

K 均值聚类是一种通用目的的算法,聚类的度量基于样本点之间的几何距离(即在坐标平面中的距离)。集群是围绕在聚类中心的族群,而集群呈现出类球状并具有相似的大小。聚类算法是我们推荐给初学者的算法,因为该算法不仅十分简单,而且还足够灵活以面对大多数问题都能给出合理的结果。
K-means是基于样本集合划分的聚类算法,是一种无监督学习。

1967年,J. MacQueen 在论文《 Some methods for classification and analysis of multivariate observations》中把这种方法正式命名为 K-means。

https://www.cs.cmu.edu/~bhiksha/courses/mlsp.fall2010/class14/macqueen.pdf
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.2.3 K-Means优缺点

优点:K 均值聚类是最流行的聚类算法,因为该算法足够快速、简单,并且如果你的预处理数据和特征工程十分有效,那么该聚类算法将拥有令人惊叹的灵活性。
缺点:该算法需要指定集群的数量,而 K 值的选择通常都不是那么容易确定的。另外,如果训练数据中的真实集群并不是类球状的,那么 K 均值聚类会得出一些比较差的集群。
在这里插入图片描述

1.2.4 K-Means算法步骤

    1. 对于给定的一组数据,随机初始化K个聚类中心(簇中心)
    1. 计算每个数据到簇中心的距离(一般采用欧氏距离),并把该数据归为离它最近的簇。
    1. 根据得到的簇,重新计算簇中心。
    1. 对步骤2、步骤3进行迭代直至簇中心不再改变或者小于指定阈值。
      在这里插入图片描述
      终止条件可以是:
      没有(或最小数目)对象被重新分配给不同的聚类
      没有(或最小数目)聚类中心再发生变化, 误差 平方和 局部最小。.

K-means聚类算法的主要步骤:
第一步:初始化聚类中心;
第二步:给聚类中心分配样本 ;
第三步:移动聚类中心 ;
第四步:停止移动。
注意:K-means算法采用的是迭代的方法,得到局部最优解.
在这里插入图片描述

2、测试

2.1 K-Means(Python)

# -*- coding:utf-8 -*-
import numpy as np
from matplotlib import pyplot


class K_Means(object):
    # k是分组数;tolerance‘中心点误差’;max_iter是迭代次数
    def __init__(self, k=2, tolerance=0.0001, max_iter=300):
        self.k_ = k
        self.tolerance_ = tolerance
        self.max_iter_ = max_iter

    def fit(self, data):
        self.centers_ = {}
        for i in range(self.k_):
            self.centers_[i] = data[i]

        for i in range(self.max_iter_):
            self.clf_ = {}
            for i in range(self.k_):
                self.clf_[i] = []
            # print("质点:",self.centers_)
            for feature in data:
                # distances = [np.linalg.norm(feature-self.centers[center]) for center in self.centers]
                distances = []
                for center in self.centers_:
                    # 欧拉距离
                    # np.sqrt(np.sum((features-self.centers_[center])**2))
                    distances.append(np.linalg.norm(feature - self.centers_[center]))
                classification = distances.index(min(distances))
                self.clf_[classification].append(feature)

            # print("分组情况:",self.clf_)
            prev_centers = dict(self.centers_)
            for c in self.clf_:
                self.centers_[c] = np.average(self.clf_[c], axis=0)

            # '中心点'是否在误差范围
            optimized = True
            for center in self.centers_:
                org_centers = prev_centers[center]
                cur_centers = self.centers_[center]
                if np.sum((cur_centers - org_centers) / org_centers * 100.0) > self.tolerance_:
                    optimized = False
            if optimized:
                break

    def predict(self, p_data):
        distances = [np.linalg.norm(p_data - self.centers_[center]) for center in self.centers_]
        index = distances.index(min(distances))
        return index


if __name__ == '__main__':
    x = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
    k_means = K_Means(k=2)
    k_means.fit(x)
    print(k_means.centers_)
    for center in k_means.centers_:
        pyplot.scatter(k_means.centers_[center][0], k_means.centers_[center][1], marker='*', s=150)

    for cat in k_means.clf_:
        for point in k_means.clf_[cat]:
            pyplot.scatter(point[0], point[1], c=('r' if cat == 0 else 'b'))

    predict = [[2, 1], [6, 9]]
    for feature in predict:
        cat = k_means.predict(predict)
        pyplot.scatter(feature[0], feature[1], c=('r' if cat == 0 else 'b'), marker='x')

    pyplot.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71

在这里插入图片描述
*是两组数据的”中心点”;x是预测点分组。

2.2 K-Means(Sklearn)

http://scikit-learn.org/stable/modules/clustering.html#k-means

2.2.1 例子1:数组分类

# -*- coding:utf-8 -*-
import numpy as np
from matplotlib import pyplot
from sklearn.cluster import KMeans

if __name__ == '__main__':
    x = np.array([[1, 2], [1.5, 1.8], [5, 8], [8, 8], [1, 0.6], [9, 11]])
    
    # 把上面数据点分为两组(非监督学习)
    clf = KMeans(n_clusters=2)
    clf.fit(x)  # 分组
    
    centers = clf.cluster_centers_ # 两组数据点的中心点
    labels = clf.labels_   # 每个数据点所属分组
    print(centers)
    print(labels)
    
    for i in range(len(labels)):
        pyplot.scatter(x[i][0], x[i][1], c=('r' if labels[i] == 0 else 'b'))
    pyplot.scatter(centers[:,0],centers[:,1],marker='*', s=100)
    
    # 预测
    predict = [[2,1], [6,9]]
    label = clf.predict(predict)
    for i in range(len(label)):
        pyplot.scatter(predict[i][0], predict[i][1], c=('r' if label[i] == 0 else 'b'), marker='x')
    
    pyplot.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

在这里插入图片描述

2.2.2 例子2:用户聚类分群

# -*- coding:utf-8 -*-
import numpy as np
from sklearn.cluster import KMeans
from sklearn import preprocessing
import pandas as pd

# 加载数据
df = pd.read_excel('titanic.xls')
df.drop(['body', 'name', 'ticket'], 1, inplace=True)
df.fillna(0, inplace=True)  # 把NaN替换为0

# 把字符串映射为数字,例如{female:1, male:0}
df_map = {}
cols = df.columns.values
for col in cols:
    if df[col].dtype != np.int64 and df[col].dtype != np.float64:
        temp = {}
        x = 0
        for ele in set(df[col].values.tolist()):
            if ele not in temp:
                temp[ele] = x
                x += 1

        df_map[df[col].name] = temp
        df[col] = list(map(lambda val: temp[val], df[col]))

# 将每一列特征标准化为标准正太分布
x = np.array(df.drop(['survived'], 1).astype(float))
x = preprocessing.scale(x)
clf = KMeans(n_clusters=2)
clf.fit(x)

# 计算分组准确率
y = np.array(df['survived'])
correct = 0
for i in range(len(x)):
    predict_data = np.array(x[i].astype(float))
    predict_data = predict_data.reshape(-1, len(predict_data))
    predict = clf.predict(predict_data)
    if predict[0] == y[i]:
        correct += 1

print(correct * 1.0 / len(x))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

在这里插入图片描述

2.2.3 例子3:手写数字数据分类

"""
===========================================================
A demo of K-Means clustering on the handwritten digits data
===========================================================
"""

# %%
# Load the dataset
# ----------------
#
# We will start by loading the `digits` dataset. This dataset contains
# handwritten digits from 0 to 9. In the context of clustering, one would like
# to group images such that the handwritten digits on the image are the same.

import numpy as np

from sklearn.datasets import load_digits

data, labels = load_digits(return_X_y=True)
(n_samples, n_features), n_digits = data.shape, np.unique(labels).size

print(f"# digits: {n_digits}; # samples: {n_samples}; # features {n_features}")

# %%
# Define our evaluation benchmark
# -------------------------------
#
# We will first our evaluation benchmark. During this benchmark, we intend to
# compare different initialization methods for KMeans. Our benchmark will:
#
# * create a pipeline which will scale the data using a
#   :class:`~sklearn.preprocessing.StandardScaler`;
# * train and time the pipeline fitting;
# * measure the performance of the clustering obtained via different metrics.
from time import time

from sklearn import metrics
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler


def bench_k_means(kmeans, name, data, labels):
    """Benchmark to evaluate the KMeans initialization methods.

    Parameters
    ----------
    kmeans : KMeans instance
        A :class:`~sklearn.cluster.KMeans` instance with the initialization
        already set.
    name : str
        Name given to the strategy. It will be used to show the results in a
        table.
    data : ndarray of shape (n_samples, n_features)
        The data to cluster.
    labels : ndarray of shape (n_samples,)
        The labels used to compute the clustering metrics which requires some
        supervision.
    """
    t0 = time()
    estimator = make_pipeline(StandardScaler(), kmeans).fit(data)
    fit_time = time() - t0
    results = [name, fit_time, estimator[-1].inertia_]

    # Define the metrics which require only the true labels and estimator
    # labels
    clustering_metrics = [
        metrics.homogeneity_score,
        metrics.completeness_score,
        metrics.v_measure_score,
        metrics.adjusted_rand_score,
        metrics.adjusted_mutual_info_score,
    ]
    results += [m(labels, estimator[-1].labels_) for m in clustering_metrics]

    # The silhouette score requires the full dataset
    results += [
        metrics.silhouette_score(
            data,
            estimator[-1].labels_,
            metric="euclidean",
            sample_size=300,
        )
    ]

    # Show the results
    formatter_result = (
        "{:9s}\t{:.3f}s\t{:.0f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}"
    )
    print(formatter_result.format(*results))


# %%
# Run the benchmark
# -----------------
#
# We will compare three approaches:
#
# * an initialization using `k-means++`. This method is stochastic and we will
#   run the initialization 4 times;
# * a random initialization. This method is stochastic as well and we will run
#   the initialization 4 times;
# * an initialization based on a :class:`~sklearn.decomposition.PCA`
#   projection. Indeed, we will use the components of the
#   :class:`~sklearn.decomposition.PCA` to initialize KMeans. This method is
#   deterministic and a single initialization suffice.
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

print(82 * "_")
print("init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette")

kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="k-means++", data=data, labels=labels)

kmeans = KMeans(init="random", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="random", data=data, labels=labels)

pca = PCA(n_components=n_digits).fit(data)
kmeans = KMeans(init=pca.components_, n_clusters=n_digits, n_init=1)
bench_k_means(kmeans=kmeans, name="PCA-based", data=data, labels=labels)

print(82 * "_")

# %%
# Visualize the results on PCA-reduced data
# -----------------------------------------
#
# :class:`~sklearn.decomposition.PCA` allows to project the data from the
# original 64-dimensional space into a lower dimensional space. Subsequently,
# we can use :class:`~sklearn.decomposition.PCA` to project into a
# 2-dimensional space and plot the data and the clusters in this new space.
import matplotlib.pyplot as plt

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4)
kmeans.fit(reduced_data)

# Step size of the mesh. Decrease to increase the quality of the VQ.
h = 0.02  # point in the mesh [x_min, x_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(
    Z,
    interpolation="nearest",
    extent=(xx.min(), xx.max(), yy.min(), yy.max()),
    cmap=plt.cm.Paired,
    aspect="auto",
    origin="lower",
)

plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(
    centroids[:, 0],
    centroids[:, 1],
    marker="x",
    s=169,
    linewidths=3,
    color="w",
    zorder=10,
)
plt.title(
    "K-means clustering on the digits dataset (PCA-reduced data)\n"
    "Centroids are marked with white cross"
)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183

在这里插入图片描述

2.2.4 例子4:鸢尾花数据分类

import time

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from numpy import nonzero, array
from sklearn.cluster import KMeans
from sklearn.metrics import f1_score, accuracy_score, normalized_mutual_info_score, rand_score, adjusted_rand_score
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA

# 数据保存在.csv文件中
iris = pd.read_csv("datasets/data/Iris.csv", header=0)  # 鸢尾花数据集 Iris  class=3
# wine = pd.read_csv("datasets/data/wine.csv")  # 葡萄酒数据集 Wine  class=3
# seeds = pd.read_csv("datasets/data/seeds.csv")  # 小麦种子数据集 seeds  class=3
# wdbc = pd.read_csv("datasets/data/wdbc.csv")  # 威斯康星州乳腺癌数据集 Breast Cancer Wisconsin (Diagnostic)  class=2
# glass = pd.read_csv("datasets/data/glass.csv")  # 玻璃辨识数据集 Glass Identification  class=6
df = iris  # 设置要读取的数据集
# print(df)

columns = list(df.columns)  # 获取数据集的第一行,第一行通常为特征名,所以先取出
features = columns[:len(columns) - 1]  # 数据集的特征名(去除了最后一列,因为最后一列存放的是标签,不是数据)
dataset = df[features]  # 预处理之后的数据,去除掉了第一行的数据(因为其为特征名,如果数据第一行不是特征名,可跳过这一步)
attributes = len(df.columns) - 1  # 属性数量(数据集维度)
original_labels = list(df[columns[-1]])  # 原始标签


def initialize_centroids(data, k):
    # 从数据集中随机选择k个点作为初始质心
    centers = data[np.random.choice(data.shape[0], k, replace=False)]
    return centers


def get_clusters(data, centroids):
    # 计算数据点与质心之间的距离,并将数据点分配给最近的质心
    distances = np.linalg.norm(data[:, np.newaxis] - centroids, axis=2)
    cluster_labels = np.argmin(distances, axis=1)
    return cluster_labels


def update_centroids(data, cluster_labels, k):
    # 计算每个簇的新质心,即簇内数据点的均值
    new_centroids = np.array([data[cluster_labels == i].mean(axis=0) for i in range(k)])
    return new_centroids


def k_means(data, k, T, epsilon):
    start = time.time()  # 开始时间,计时
    # 初始化质心
    centroids = initialize_centroids(data, k)
    t = 0
    while t <= T:
        # 分配簇
        cluster_labels = get_clusters(data, centroids)

        # 更新质心
        new_centroids = update_centroids(data, cluster_labels, k)

        # 检查收敛条件
        if np.linalg.norm(new_centroids - centroids) < epsilon:
            break
        centroids = new_centroids
        print("第", t, "次迭代")
        t += 1
    print("用时:{0}".format(time.time() - start))
    return cluster_labels, centroids


# 计算聚类指标
def clustering_indicators(labels_true, labels_pred):
    if type(labels_true[0]) != int:
        labels_true = LabelEncoder().fit_transform(df[columns[len(columns) - 1]])  # 如果数据集的标签为文本类型,把文本标签转换为数字标签
    f_measure = f1_score(labels_true, labels_pred, average='macro')  # F值
    accuracy = accuracy_score(labels_true, labels_pred)  # ACC
    normalized_mutual_information = normalized_mutual_info_score(labels_true, labels_pred)  # NMI
    rand_index = rand_score(labels_true, labels_pred)  # RI
    ARI = adjusted_rand_score(labels_true, labels_pred)
    return f_measure, accuracy, normalized_mutual_information, rand_index, ARI


# 绘制聚类结果散点图
def draw_cluster(dataset, centers, labels):
    center_array = array(centers)
    if attributes > 2:
        dataset = PCA(n_components=2).fit_transform(dataset)  # 如果属性数量大于2,降维
        center_array = PCA(n_components=2).fit_transform(center_array)  # 如果属性数量大于2,降维
    else:
        dataset = array(dataset)
    # 做散点图
    label = array(labels)
    plt.scatter(dataset[:, 0], dataset[:, 1], marker='o', c='black', s=7)  # 原图
    # plt.show()
    colors = np.array(
        ["#FF0000", "#0000FF", "#00FF00", "#FFFF00", "#00FFFF", "#FF00FF", "#800000", "#008000", "#000080", "#808000",
         "#800080", "#008080", "#444444", "#FFD700", "#008080"])
    # 循换打印k个簇,每个簇使用不同的颜色
    for i in range(k):
        plt.scatter(dataset[nonzero(label == i), 0], dataset[nonzero(label == i), 1], c=colors[i], s=7, marker='o')
    # plt.scatter(center_array[:, 0], center_array[:, 1], marker='x', color='m', s=30)  # 聚类中心
    plt.show()

if __name__ == "__main__":
    k = 3  # 聚类簇数
    T = 100  # 最大迭代数
    n = len(dataset)  # 样本数
    epsilon = 1e-5
    # 预测全部数据
    # labels, centers = k_means(np.array(dataset), k, T, epsilon)

    clf = KMeans(n_clusters=k, max_iter=T, tol=epsilon)
    clf.fit(np.array(dataset))  # 分组
    centers = clf.cluster_centers_ # 两组数据点的中心点
    labels = clf.labels_   # 每个数据点所属分组

    # print(labels)
    F_measure, ACC, NMI, RI, ARI = clustering_indicators(original_labels, labels)  # 计算聚类指标
    print("F_measure:", F_measure, "ACC:", ACC, "NMI", NMI, "RI", RI, "ARI", ARI)
    # print(membership)
    # print(centers)
    # print(dataset)
    draw_cluster(dataset, centers, labels=labels)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122

在这里插入图片描述

2.3 K-Means(nltk)

https://www.nltk.org/api/nltk.cluster.kmeans.html

K-means 聚类器从 k 个任意选择的均值开始,然后分配 具有最接近均值的聚类的每个向量。然后,它会重新计算 每个簇的均值,作为簇中向量的质心。这 重复该过程,直到群集成员身份稳定下来。这是一个 爬坡算法,可能收敛到局部最大值。因此, 聚类通常以随机的初始均值重复,并且大多数 选择常见的输出均值。

def demo():
    # example from figure 14.9, page 517, Manning and Schutze
    import numpy
    from nltk.cluster import KMeansClusterer, euclidean_distance

    vectors = [numpy.array(f) for f in [[2, 1], [1, 3], [4, 7], [6, 7]]]
    means = [[4, 3], [5, 5]]

    clusterer = KMeansClusterer(2, euclidean_distance, initial_means=means)
    clusters = clusterer.cluster(vectors, True, trace=True)

    print("Clustered:", vectors)
    print("As:", clusters)
    print("Means:", clusterer.means())
    print()

    vectors = [numpy.array(f) for f in [[3, 3], [1, 2], [4, 2], [4, 0], [2, 3], [3, 1]]]

    # test k-means using the euclidean distance metric, 2 means and repeat
    # clustering 10 times with random seeds

    clusterer = KMeansClusterer(2, euclidean_distance, repeats=10)
    clusters = clusterer.cluster(vectors, True)
    print("Clustered:", vectors)
    print("As:", clusters)
    print("Means:", clusterer.means())
    print()

    # classify a new vector
    vector = numpy.array([3, 3])
    print("classify(%s):" % vector, end=" ")
    print(clusterer.classify(vector))
    print()

if __name__ == "__main__":
    demo()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

在这里插入图片描述

结语

如果您觉得该方法或代码有一点点用处,可以给作者点个赞,或打赏杯咖啡;╮( ̄▽ ̄)╭
如果您感觉方法或代码不咋地//(ㄒoㄒ)//,就在评论处留言,作者继续改进;o_O???
如果您需要相关功能的代码定制化开发,可以留言私信作者;(✿◡‿◡)
感谢各位大佬童鞋们的支持!( ´ ▽´ )ノ ( ´ ▽´)っ!!!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/359638
推荐阅读
相关标签
  

闽ICP备14008679号