当前位置:   article > 正文

【深度学习】深入浅出CRF as RNN(以RNN形式做CRF后处理)_rnscrf

rnscrf

深度学习】深入浅出CRF as RNN(以RNN形式做CRF后处理)

文章目录
1 概述
2 目标
3 思路
4 简述
5 论文原文
	5.1 Introduction
	5.2 相关工作
	5.3 关键步骤
6 仓库代码
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

1 概述

条件随机场(CRF或CRFs)与隐马尔科夫模型有着千丝万缕的联系。为了理解CRF,这里先简单说一下马尔科夫链(MC, Markov Chain)和隐马尔科夫模型。

1.1 马尔科夫链

马尔科夫链是指具有马尔可夫性质且存在于离散指数集合状态空间内的随机过程。那么什么是马尔科夫性质呢?

从定义上来说,当一个随机过程在给定现在状态及过去所有状态的情况下,其未来状态的条件概率分布仅依赖于当前状态;换句话说,在给定现在状态时,其过去状态(即该过程的历史路径)是条件独立的。

这个表述比较抽象,我们举个马尔科夫链的例子理解一下:

比如有一只蚂蚁在下图所示的网格内爬行(网格区

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/395049
推荐阅读
相关标签
  

闽ICP备14008679号