赞
踩
目录
在ultralytics-main/ultralytics/nn/modules/conv.py中添加EMA注意力机制模块:
-
- # """**************add Attention***************"""
- elif m in {GAM_Attention, EMA}:
- c1, c2 = ch[f], args[0]
- if c2 != nc: # if not output
- c2 = make_divisible(min(c2, max_channels) * width, 8)
- args = [c1, c2, *args[1:]]
-
- elif m is TripletAttention:
- c1, c2 = ch[f], args[0]
- if c2 != nc:
- c2 = make_divisible(min(c2, max_channels) * width, 8)
- args = [c1, *args[1:]]
在ultralytics-main/ultralytics/models/v8/yolov8s-p6-attention.yaml配置文件:
- # Ultralytics YOLO
- # YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
-
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8-SPPCSPC.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
- s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
- m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
- l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
- x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
-
- # YOLOv8.0x6 backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 3, C2f, [128, True]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 6, C2f, [256, True]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 6, C2f, [512, True]]
- - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- - [-1, 3, C2f, [768, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- - [-1, 3, C2f, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 11
-
- # YOLOv8.0x6 head
- head:
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- - [[-1, 8], 1, Concat, [1]] # cat backbone P5
- - [-1, 3, C2, [768, False]] # 14
-
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 3, C2, [512, False]] # 17
-
- - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 3, C2, [256, False]] # 20 (P3/8-small)
- - [-1, 1, GAM_Attention, [256, 256]]
- # - [-1, 1, TripletAttention, [256]]
- # - [-1, 1, EMA, [256]]
-
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 17], 1, Concat, [1]] # cat head P4
- - [-1, 3, C2, [512, False]] # 23 (P4/16-medium)
- - [-1, 1, GAM_Attention, [512, 512]]
- # - [-1, 1, TripletAttention, [512]]
- # - [-1, 1, EMA, [512]]
-
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 14], 1, Concat, [1]] # cat head P5
- - [-1, 3, C2, [768, False]] # 26 (P5/32-large)
- - [-1, 1, GAM_Attention, [768, 768]]
- # - [-1, 1, TripletAttention, [768]]
- # - [-1, 1, EMA, [768]]
-
- - [-1, 1, Conv, [768, 3, 2]]
- - [[-1, 11], 1, Concat, [1]] # cat head P6
- - [-1, 3, C2, [1024, False]] # 29 (P6/64-xlarge)
- - [-1, 1, GAM_Attention, [1024, 1024]]
- # - [-1, 1, TripletAttention, [1024]]
- # - [-1, 1, EMA, [1024]]
-
- - [[21, 25, 29, 33], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
说明:上述注意力机制可以在head中使用,同样可以添加在backbone中,可以多次尝试选择最适合自己的任务的方式,但需要注意head中的concat层是否准确。
GAM
- def channel_shuffle(x, groups=2): ##shuffle channel
- # RESHAPE----->transpose------->Flatten
- B, C, H, W = x.size()
- out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
- out = out.view(B, C, H, W)
- return out
-
- class GAM_Attention(nn.Module):
- # https://paperswithcode.com/paper/global-attention-mechanism-retain-information
- def __init__(self, c1, c2, group=True, rate=4):
- super(GAM_Attention, self).__init__()
-
- self.channel_attention = nn.Sequential(
- nn.Linear(c1, int(c1 / rate)),
- nn.ReLU(inplace=True),
- nn.Linear(int(c1 / rate), c1)
- )
-
- self.spatial_attention = nn.Sequential(
-
- nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),
- kernel_size=7,
- padding=3),
- nn.BatchNorm2d(int(c1 / rate)),
- nn.ReLU(inplace=True),
- nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,
- kernel_size=7,
- padding=3),
- nn.BatchNorm2d(c2)
- )
-
- def forward(self, x):
- b, c, h, w = x.shape
- x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
- x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
- x_channel_att = x_att_permute.permute(0, 3, 1, 2)
- # x_channel_att=channel_shuffle(x_channel_att,4) #last shuffle
- x = x * x_channel_att
-
- x_spatial_att = self.spatial_attention(x).sigmoid()
- x_spatial_att = channel_shuffle(x_spatial_att, 4) # last shuffle
- out = x * x_spatial_att
- # out=channel_shuffle(out,4) #last shuffle
- return out
EMA
- class EMA(nn.Module):
- def __init__(self, channels, c2=None, factor=32):
- super(EMA, self).__init__()
- self.groups = factor
- assert channels // self.groups > 0
- self.softmax = nn.Softmax(-1)
- self.agp = nn.AdaptiveAvgPool2d((1, 1))
- self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
- self.pool_w = nn.AdaptiveAvgPool2d((1, None))
- self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)
- self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)
- self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)
-
- def forward(self, x):
- b, c, h, w = x.size()
- group_x = x.reshape(b * self.groups, -1, h, w) # b*g,c//g,h,w
- x_h = self.pool_h(group_x)
- x_w = self.pool_w(group_x).permute(0, 1, 3, 2)
- hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))
- x_h, x_w = torch.split(hw, [h, w], dim=2)
- x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())
- x2 = self.conv3x3(group_x)
- x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
- x12 = x2.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw
- x21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))
- x22 = x1.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hw
- weights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)
- return (group_x * weights.sigmoid()).reshape(b, c, h, w)
Triplet
- class BasicConv(nn.Module): #https://arxiv.org/pdf/2010.03045.pdf
- def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
- bn=True, bias=False):
- super(BasicConv, self).__init__()
- self.out_channels = out_planes
- self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
- dilation=dilation, groups=groups, bias=bias)
- self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
- self.relu = nn.ReLU() if relu else None
-
- def forward(self, x):
- x = self.conv(x)
- if self.bn is not None:
- x = self.bn(x)
- if self.relu is not None:
- x = self.relu(x)
- return x
-
-
- class ZPool(nn.Module):
- def forward(self, x):
- return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1).unsqueeze(1)), dim=1)
-
-
- class AttentionGate(nn.Module):
- def __init__(self):
- super(AttentionGate, self).__init__()
- kernel_size = 7
- self.compress = ZPool()
- self.conv = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)
-
- def forward(self, x):
- x_compress = self.compress(x)
- x_out = self.conv(x_compress)
- scale = torch.sigmoid_(x_out)
- return x * scale
-
-
- class TripletAttention(nn.Module):
- def __init__(self, no_spatial=False):
- super(TripletAttention, self).__init__()
- self.cw = AttentionGate()
- self.hc = AttentionGate()
- self.no_spatial = no_spatial
- if not no_spatial:
- self.hw = AttentionGate()
-
- def forward(self, x):
- x_perm1 = x.permute(0, 2, 1, 3).contiguous()
- x_out1 = self.cw(x_perm1)
- x_out11 = x_out1.permute(0, 2, 1, 3).contiguous()
- x_perm2 = x.permute(0, 3, 2, 1).contiguous()
- x_out2 = self.hc(x_perm2)
- x_out21 = x_out2.permute(0, 3, 2, 1).contiguous()
- if not self.no_spatial:
- x_out = self.hw(x)
- x_out = 1 / 3 * (x_out + x_out11 + x_out21)
- else:
- x_out = 1 / 2 * (x_out11 + x_out21)
- return x_out
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。