当前位置:   article > 正文

算法部署 | 使用TensorRT在Jetson-Xavier-AGX上部署YOLOv4目标检测算法

算法部署 | 使用TensorRT在Jetson-Xavier-AGX上部署YOLOv4目标检测算法
  • 项目应用场景
    • 面向 NVIDIA Jetson Xavier AGX 平台部署 YOLOv4 目标检测算法场景,项目采用 TensorRT 进行 GPU 算法加速推理。
  • 项目效果

  • 项目细节 ==> 具体参见项目 README.md
    • (1) 安装依赖
  1. Install pycuda (takes awhile)
  2. $ cd ${HOME}/catkin_ws/src/yolov4_trt_ros/dependencies
  3. $ ./install_pycuda.sh
  4. Install Protobuf (takes awhile)
  5. $ cd ${HOME}/catkin_ws/src/yolov4_trt_ros/dependencies
  6. $ ./install_protobuf-3.8.0.sh
  7. Install onnx (depends on Protobuf above)
  8. $ sudo pip3 install onnx==1.4.1
    • (2) 编译
  1. $ cd ~/catkin_ws && catkin_make
  2. $ source devel/setup.bash
  3. $ cd ${HOME}/catkin_ws/src/yolov4_trt_ros/plugins
  4. $ make
    • (3) 模型转换
$ ./convert_yolo_trt
    • (4) 执行推理
  1. # For YOLOv3 (single input)
  2. $ roslaunch yolov4_trt_ros yolov3_trt.launch
  3. # For YOLOv4 (single input)
  4. $ roslaunch yolov4_trt_ros yolov4_trt.launch
  5. # For YOLOv4 (multiple input)
  6. $ roslaunch yolov4_trt_ros yolov4_trt_batch.launch
  • 项目获取
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号