当前位置:   article > 正文

自适应模糊PID(位置式)C语言实现_模糊pid c语言

模糊pid c语言

一、自适应模糊PID原理

自适应模糊PID 控制系统结构如图所示。控制系统以偏差e和偏差变化率ec作为输入量,利用模糊规则进行模糊推理,输出Δkp,Δki,Δkd。对PID三个参数进行在线分析与调整,而自适应模糊PID 控制器输出u( t) 作用Mosfet开关管上,从而使sepic的输出电压达到要求的实时稳定性。
在这里插入图片描述
图 4.2.1 模糊PID结构图
系统采用两输入一输出的模糊控制器的形式,以密度偏差e 和偏差变化率ec 作为模糊控制器的输入量,以PID 参数的修正量Δkp,Δki,Δkd分别为模糊控制器的输出量。其变量、基本论域、模糊子集、模糊论域、量化因子、比例因子如表所示。考虑到论域覆盖范围和灵敏度,并且为了F28027计算简便,各模糊子集采用三角形隶属函数。

表 4.2.1 ΔKp模糊规则表
在这里插入图片描述

表4.2.2ΔKi模糊规则表
在这里插入图片描述

表4.2.3ΔKd模糊规则表
在这里插入图片描述
在这里插入图片描述
图4.2.2 隶属度函数
根据已经确立的模糊控制规则和隶属度函数,采用Mamdani推理方法,面积重心法非模糊化。
在这里插入图片描述
总结一下,整个模糊自适应PID的运算工程如下所示:

在这里插入图片描述

二、代码实现

该工程来自https://github.com/FlameAlpha/fuzzy-pid
某位国内大佬编写,顶礼膜拜。

fuzzy_pid.h

#ifndef _FUZZY_PID_H_
#define _FUZZY_PID_H_

#ifdef __cplusplus
extern "C" {
#endif


#include "math.h"
#include "stdlib.h"
#include "User_Component/mySci/printf.h"



#ifndef bool
#define bool char
#endif

#ifndef false
#define false (char)0
#endif

#ifndef true
#define true (char)1
#endif


// Fuzzy quantity fields
enum quantity_fields
{
    qf_small = 5,
    qf_middle = 7,
    qf_large = 8
};

#define qf_default qf_middle

struct fuzzy
{
    unsigned int input_num;
    unsigned int output_num;
    unsigned int fo_type;
    unsigned int *mf_type;
    int *mf_params;
    unsigned int df_type;
    int *rule_base;
    float *output;
};

struct PID
{
    float kp;
    float ki;
    float kd;

    float delta_kp_max;
    float delta_ki_max;
    float delta_kd_max;

    float delta_kp;
    float delta_ki;
    float delta_kd;

    float error_max;
    float delta_error_max;

    float last_error;
    float current_error;

    float intergral;
    float intergral_limit;

    float dead_zone;
    float feed_forward;

    float output;

    int output_min_value;
    int output_middle_value;
    int output_max_value;

    float linear_adaptive_kp;

    struct fuzzy *fuzzy_struct;
};

#define NB -3
#define NM -2
#define NS -1
#define ZO 0
#define PS 1
#define PM 2
#define PB 3



//#define fuzzy_pid_debug_print
//#define fuzzy_pid_dead_zone
//#define fuzzy_pid_integral_limit
//#define fuzzy_pid_rule_base_deep_copy

#define pid_params_count 7

#define torque_mode 1
#define position_mode 2
#define control_mode position_mode

#if control_mode == position_mode
#define max_error 5.0f
#define max_delta_error 5.0f
#else
#define max_error 12.0f
#define max_delta_error 12.0f
#endif

#define min_pwm_output 250
#define middle_pwm_output 1500
#define max_pwm_output 2900

struct fuzzy *fuzzy_init(unsigned int input_num, unsigned int output_num);

void fuzzy_params_init(struct fuzzy *fuzzy_struct, unsigned int mf_type, unsigned int fo_type, unsigned int df_type,
                       int mf_params[], int rule_base[][qf_default]);

void fuzzy_control(float e, float de, struct fuzzy *fuzzy_struct);



struct PID *raw_fuzzy_pid_init(float kp, float ki, float kd, float integral_limit, float dead_zone,
                               float feed_forward, float error_max, float delta_error_max, float delta_kp_max,
                               float delta_ki_max, float delta_kd_max, unsigned int mf_type, unsigned int fo_type,
                               unsigned int df_type, int *mf_params, int rule_base[][qf_default],
                               int output_min_value, int output_middle_value, int output_max_value);

//float params[pid_params_count] = {kp, ki, kd, integral_limit, dead_zonefeed_forward, linear_adaptive_kp};


struct PID *fuzzy_pid_init(float *params, float delta_k, unsigned int mf_type, unsigned int fo_type,
                           unsigned int df_type, int mf_params[], int rule_base[][qf_default]);


struct PID **
fuzzy_pid_vector_init(float params[][pid_params_count], float delta_k, unsigned int mf_type, unsigned int fo_type,
                      unsigned int df_type, int *mf_params, int rule_base[][qf_default],
                      unsigned int count);


float fuzzy_pid_control(float real, float idea, struct PID *pid);

int direct_control(int zero_value, int offset_value, bool direct);


int fuzzy_pid_motor_pwd_output(float real, float idea, bool direct, struct PID *pid);

void delete_pid(struct PID *pid);

void delete_pid_vector(struct PID **pid_vector, unsigned int count);

#ifdef __cplusplus
}
#endif

#endif //_FUZZY_PID_H_

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164

fuzzy_pid.c

#include "User_Component/myPID/fuzzy_pid.h"

struct fuzzy *fuzzy_init(unsigned int input_num, unsigned int output_num)
{
    struct fuzzy *fuzzy_struct = (struct fuzzy *) malloc(sizeof(struct fuzzy));
    fuzzy_struct->input_num = input_num;
    fuzzy_struct->output_num = output_num;
    fuzzy_struct->mf_type = (unsigned int *) malloc((input_num + output_num) * sizeof(unsigned int));
#ifdef fuzzy_pid_rule_base_deep_copy
    fuzzy_struct->mf_params = (int *) malloc(4 * qf_default * sizeof(int));
    fuzzy_struct->rule_base = (int *) malloc(output_num * qf_default * qf_default * sizeof(int));
#endif
    fuzzy_struct->output = (float *) malloc(output_num * sizeof(float));
    return fuzzy_struct;
}

void delete_fuzzy(struct fuzzy *fuzzy_struct)
{
    free(fuzzy_struct->mf_type);
    free(fuzzy_struct->output);
    free(fuzzy_struct);
}

void fuzzy_params_init(struct fuzzy *fuzzy_struct, unsigned int mf_type, unsigned int fo_type, unsigned int df_type,
                       int mf_params[], int rule_base[][qf_default])
{
    for (unsigned int i = 0; i < fuzzy_struct->input_num + fuzzy_struct->output_num; ++i)
    {
        fuzzy_struct->mf_type[i] = mf_type;
    }

    for (unsigned int i = 0; i < fuzzy_struct->output_num; ++i)
    {
        fuzzy_struct->output[i] = 0;
    }

#ifdef fuzzy_pid_rule_base_deep_copy
    for (unsigned int j = 0; j < 4 * qf_default; ++j)
    {
        fuzzy_struct->mf_params[j] = mf_params[j];
    }

    for (unsigned int k = 0; k < fuzzy_struct->output_num * qf_default; ++k)
    {
        for (unsigned int i = 0; i < qf_default; ++i)
        {
            fuzzy_struct->rule_base[k * 7 + i] = rule_base[k][i];
        }
    }
#else
    fuzzy_struct->mf_params = mf_params;
    fuzzy_struct->rule_base = (int *) rule_base;
#endif

    fuzzy_struct->fo_type = fo_type;
    fuzzy_struct->df_type = df_type;
}

#define inverse(parameter) 1.0f/(float)parameter

// Gaussian membership function
float gaussmf(float x, float sigma, float c)
{
    return expf(-powf(((x - c) / sigma), 2.0f));
}

// Generalized bell-shaped membership function
float gbellmf(float x, float a, float b, float c)
{
    return inverse(1.0f + powf(fabsf((x - c) / a), 2.0f * b));
}

// Sigmoidal membership function
float sigmf(float x, float a, float c)
{
    return inverse(1.0f + expf(a * (c - x)));
}

// Trapezoidal membership function
float trapmf(float x, float a, float b, float c, float d)
{
    if (x >= a && x < b)
        return (x - a) / (b - a);
    else if (x >= b && x < c)
        return 1.0f;
    else if (x >= c && x <= d)
        return (d - x) / (d - c);
    else return 0.0f;
}

// Triangular membership function
float trimf(float x, float a, float b, float c)
{
    return trapmf(x, a, b, b, c);
}

// Z-shaped membership function
float zmf(float x, float a, float b)
{
    if (x <= a)
        return 1.0f;
    else if (x >= a && x <= (a + b) / 2.0f)
        return 1.0f - 2.0f * powf((x - a) / (b - a), 2.0f);
    else if (x >= (a + b) / 2.0f && x < b)
        return 2.0f * powf((x - b) / (b - a), 2.0f);
    else return 0;
}

// Membership function
float mf(float x, unsigned int mf_type, int *params)
{
    switch (mf_type)
    {
    case 0:
        return gaussmf(x, params[0], params[1]);
    case 1:
        return gbellmf(x, params[0], params[1], params[2]);
    case 2:
        return sigmf(x, params[0], params[2]);
    case 3:
        return trapmf(x, params[0], params[1], params[2], params[3]);
    case 5:
        return zmf(x, params[0], params[1]);
    default: // set triangular as default membership function
        return trimf(x, params[0], params[1], params[2]);
    }
}

// Union operator
float or (float a, float b, unsigned int type)
{
    if (type == 1)   // algebraic sum
    {
        return a + b - a * b;
    }
    else if (type == 2)     // bounded sum
    {
        return fminf(1, a + b);
    }
    else     // fuzzy union
    {
        return fmaxf(a, b);
    }
}

// Intersection operator
float and (float a, float b, unsigned int type)
{
    if (type == 1)   // algebraic product
    {
        return a * b;
    }
    else if (type == 2)     // bounded product
    {
        return fmaxf(0, a + b - 1);
    }
    else     // fuzzy intersection
    {
        return fminf(a, b);
    }
}

// Equilibrium operator
float equilibrium(float a, float b, float params)
{
    return powf(a * b, 1 - params) * powf(1 - (1 - a) * (1 - b), params);
}

// Fuzzy operator
float fo(float a, float b, unsigned int type)
{
    if (type < 3)
    {
        return and (a, b, type);
    }
    else if (type < 6)
    {
        return or (a, b, type - 3);
    }
    else
    {
        return equilibrium(a, b, 0.5f);
    }
}

// Mean of centers defuzzifier, only for two input multiple index
void moc(const float *joint_membership, const unsigned int *index, const unsigned int *count, struct fuzzy *fuzzy_struct)
{

    float denominator_count = 0;
//    float numerator_count[fuzzy_struct->output_num];
    //注意 TI的C99编译器并不是完全支持动态数组的特性,所以这里改变了一下(c89写法)
    float *numerator_count= (float *)malloc(fuzzy_struct->output_num*sizeof(float));

    for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l)
    {
        numerator_count[l] = 0;
    }

    for (int i = 0; i < count[0]; ++i)
    {
        for (int j = 0; j < count[1]; ++j)
        {
            denominator_count += joint_membership[i * count[1] + j];
        }
    }

    for (unsigned int k = 0; k < fuzzy_struct->output_num; ++k)
    {
        for (unsigned int i = 0; i < count[0]; ++i)
        {
            for (unsigned int j = 0; j < count[1]; ++j)
            {
                numerator_count[k] += joint_membership[i * count[1] + j] *
                                      fuzzy_struct->rule_base[k * qf_default * qf_default + index[i] * qf_default +
                                                index[count[0] + j]];
            }
        }
    }

#ifdef fuzzy_pid_debug_print
    printf("output:\n");
#endif
    for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l)
    {
        fuzzy_struct->output[l] = numerator_count[l] / denominator_count;
#ifdef fuzzy_pid_debug_print
        printf("%f,%f,%f\n", numerator_count[l], denominator_count, fuzzy_struct->index[l]);
#endif
    }
    free(numerator_count);//有借有还再借不难
}

// Defuzzifier
void df(const float *joint_membership, const unsigned int *output, const unsigned int *count, struct fuzzy *fuzzy_struct,
        int df_type)
{
    if (df_type == 0)
        moc(joint_membership, output, count, fuzzy_struct);
    else
    {
        printf("Waring: No such of defuzzifier!\n");
        moc(joint_membership, output, count, fuzzy_struct);
    }
}

void fuzzy_control(float e, float de, struct fuzzy *fuzzy_struct)
{
    float membership[qf_default * 2]; // Store membership
    unsigned int index[qf_default * 2]; // Store the index of each membership
    unsigned int count[2] = {0, 0};

    {
        int j = 0;
        for (int i = 0; i < qf_default; ++i)
        {
            float temp = mf(e, fuzzy_struct->mf_type[0], fuzzy_struct->mf_params + 4 * i);
//            if (temp > 1e-4)
//            {
                membership[j] = temp;
                index[j++] = i;
//            }
        }

        count[0] = j;

        for (int i = 0; i < qf_default; ++i)
        {
            float temp = mf(de, fuzzy_struct->mf_type[1], fuzzy_struct->mf_params + 4 * i);
//            if (temp > 1e-4)
//            {
                membership[j] = temp;
                index[j++] = i;
//            }
        }

        count[1] = j - count[0];
    }

#ifdef fuzzy_pid_debug_print
    printf("membership:\n");
    for (unsigned int k = 0; k < j; ++k)
    {
        printf("%f\n", membership[k]);
    }

    printf("index:\n");
    for (unsigned int k = 0; k < j; ++k)
    {
        printf("%d\n", index[k]);
    }

    printf("count:\n");
    for (unsigned int k = 0; k < 2; ++k)
    {
        printf("%d\n", count[k]);
    }
#endif

    if (count[0] == 0 || count[1] == 0)
    {
        for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l)
        {
            fuzzy_struct->output[l] = 0;
        }
        return;
    }

    // Joint membership
//注意 TI的C99编译器并不是完全支持动态数组的特性,所以这里改变了一下(c89写法)
//    float joint_membership[count[0] * count[1]];
    float *joint_membership= (float *)malloc(count[0] * count[1]*sizeof(float));

    for (int i = 0; i < count[0]; ++i)
    {
        for (int j = 0; j < count[1]; ++j)
        {
            joint_membership[i * count[1] + j] = fo(membership[i], membership[count[0] + j], fuzzy_struct->fo_type);
        }
    }

    df(joint_membership, index, count, fuzzy_struct, 0);

    free(joint_membership);
}

struct PID *raw_fuzzy_pid_init(float kp, float ki, float kd, float integral_limit, float dead_zone,
                               float feed_forward, float error_max, float delta_error_max, float delta_kp_max,
                               float delta_ki_max, float delta_kd_max, unsigned int mf_type, unsigned int fo_type,
                               unsigned int df_type, int mf_params[], int rule_base[][qf_default],
                               int output_min_value, int output_middle_value, int output_max_value)
{
    struct PID *pid = (struct PID *) malloc(sizeof(struct PID));
    pid->kp = kp;
    pid->ki = ki;
    pid->kd = kd;

    pid->delta_kp_max = delta_kp_max;
    pid->delta_ki_max = delta_ki_max;
    pid->delta_kd_max = delta_kd_max;

    pid->delta_kp = 0;
    pid->delta_ki = 0;
    pid->delta_kd = 0;

    pid->error_max = error_max;
    pid->delta_error_max = delta_error_max;

    int output_count = 1;
    if (ki > 1e-4)
    {
        output_count += 1;
        if (kd > 1e-4)
            output_count += 1;
    }

    pid->fuzzy_struct = fuzzy_init(2, output_count);
    fuzzy_params_init(pid->fuzzy_struct, mf_type, fo_type, df_type, mf_params, rule_base);

    pid->last_error = 0;
    pid->current_error = 0;

    pid->intergral = 0;
    pid->intergral_limit = integral_limit;

    pid->dead_zone = dead_zone;
    pid->feed_forward = feed_forward;

    pid->output_max_value = output_max_value;
    pid->output_middle_value = output_middle_value;
    pid->output_min_value = output_min_value;

    return pid;
}

struct PID *fuzzy_pid_init(float *params, float delta_k, unsigned int mf_type, unsigned int fo_type,
                           unsigned int df_type, int mf_params[], int rule_base[][qf_default])
{
    return raw_fuzzy_pid_init(params[0], params[1], params[2], params[3], params[4], params[5], max_error,
                              max_delta_error, params[0] / delta_k, params[1] / delta_k, params[2] / delta_k, mf_type,
                              fo_type, df_type, mf_params,
                              rule_base, min_pwm_output, middle_pwm_output, max_pwm_output);
}


int round_user(float parameter)
{
    if ((int)(parameter * 10.0) % 10 >= 5)
        return parameter + 1;
    else
        return parameter;
}

int limit(int value, int max_limit, int min_limit)
{
    if (value > max_limit)
        return max_limit;
    if (value < min_limit)
        return min_limit;
    return value;
}
float limits(float value, float max_limit, float min_limit)
{
    if (value > max_limit)
        return max_limit;
    if (value < min_limit)
        return min_limit;
    return value;
}

float fuzzy_pid_control(float real, float idea, struct PID *pid)
{
    pid->last_error = pid->current_error;
    pid->current_error = idea - real;
    float delta_error = pid->current_error - pid->last_error;
    float uk;
#ifdef fuzzy_pid_dead_zone
    if (pid->current_error < pid->dead_zone && pid->current_error > -pid->dead_zone)
    {
        pid->current_error = 0;
    }
    else
    {
        if (pid->current_error > pid->dead_zone)
            pid->current_error = pid->current_error - pid->dead_zone;
        else
        {
            if (pid->current_error < -pid->dead_zone)
                pid->current_error = pid->current_error + pid->dead_zone;
        }
    }
#endif

    //关键代码
    fuzzy_control(pid->current_error / pid->error_max * 3.0f, delta_error / pid->delta_error_max * 3.0f,
                  pid->fuzzy_struct);

//    pid->delta_kp = limits(pid->fuzzy_struct->output[0]/3.0f * pid->delta_kp_max, pid->delta_kp_max ,-pid->delta_kp_max);
    pid->delta_kp = limits(pid->fuzzy_struct->output[0], pid->delta_kp_max ,-pid->delta_kp_max);

    if (pid->fuzzy_struct->output_num >= 2)

//        pid->delta_ki = limits(pid->fuzzy_struct->output[1]/3.0f * pid->delta_ki_max, pid->delta_ki_max ,-pid->delta_ki_max);
        pid->delta_ki = limits(pid->fuzzy_struct->output[1], pid->delta_ki_max ,-pid->delta_ki_max);
    else pid->delta_ki = 0;

    if (pid->fuzzy_struct->output_num >= 3)

//        pid->delta_kd =limits(pid->fuzzy_struct->output[2]/3.0f * pid->delta_kd_max, pid->delta_kd_max ,-pid->delta_kd_max);
        pid->delta_kd =limits(pid->fuzzy_struct->output[2], pid->delta_kd_max ,-pid->delta_kd_max);

    else pid->delta_kd = 0;

#ifdef fuzzy_pid_debug_print
    printf("kp : %f, ki : %f, kd : %f\n", pid->kp + pid->delta_kp, pid->ki + pid->delta_ki, pid->kd + pid->delta_kd);
#endif

//    printf("kpkikd:%f,%f,%f,%f\n", pid->kp + pid->delta_kp, pid->ki + pid->delta_ki, pid->kd + pid->delta_kd,0.0);

    pid->intergral += (pid->ki + pid->delta_ki) * pid->current_error;
#ifdef fuzzy_pid_integral_limit
    if (pid->intergral > pid->intergral_limit)
        pid->intergral = pid->intergral_limit;
    else
    {
        if (pid->intergral < -pid->intergral_limit)
            pid->intergral = -pid->intergral_limit;
    }
#endif
    // //这里位置式PID算法

//    pid->output = (pid->kp + pid->delta_kp) * pid->current_error + pid->intergral +
//                  (pid->kd + pid->delta_kd) * (pid->current_error - pid->last_error);

    uk = (pid->kp + pid->delta_kp) * pid->current_error + pid->intergral +
                  (pid->kd + pid->delta_kd) * (pid->current_error - pid->last_error);

//    pid->output += pid->feed_forward * (float) idea;

    uk +=pid->feed_forward * (float) idea;//前馈环节

    pid->output = uk;

    //限幅
    if(pid->output<pid ->output_min_value)
        pid->output=pid ->output_min_value;
    else if (pid->output>pid ->output_max_value)
        pid->output=pid ->output_max_value;

    return pid->output;
}


void delete_pid(struct PID *pid)
{
    if (pid->fuzzy_struct != NULL)
    {
        delete_fuzzy(pid->fuzzy_struct);
    }
    free(pid);
}

void delete_pid_vector(struct PID **pid_vector, unsigned int count)
{
    for (unsigned int i = 0; i < count; ++i)
    {
        delete_pid(pid_vector[i]);
    }
    free(pid_vector);
}



struct PID **
fuzzy_pid_vector_init(float params[][pid_params_count], float delta_k, unsigned int mf_type, unsigned int fo_type,
                      unsigned int df_type, int *mf_params, int rule_base[][qf_default],
                      unsigned int count)
{
    struct PID **pid = (struct PID **) malloc(sizeof(struct PID *) * count);
    for (unsigned int i = 0; i < count; ++i)
    {
        pid[i] = fuzzy_pid_init(params[i], delta_k, mf_type, fo_type, df_type, mf_params, rule_base);
    }
    return pid;
}

int direct_control(int zero_value, int offset_value, bool direct)
{
    if (direct == true)
    {
        return zero_value + offset_value;
    }
    else
    {
        return zero_value - offset_value;
    }
}

int fuzzy_pid_motor_pwd_output(float real, float idea, bool direct, struct PID *pid)
{
    return limit(direct_control(pid->output_middle_value, fuzzy_pid_control(real, idea, pid), direct),
                 pid->output_max_value, pid->output_min_value);
}



  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266
  • 267
  • 268
  • 269
  • 270
  • 271
  • 272
  • 273
  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284
  • 285
  • 286
  • 287
  • 288
  • 289
  • 290
  • 291
  • 292
  • 293
  • 294
  • 295
  • 296
  • 297
  • 298
  • 299
  • 300
  • 301
  • 302
  • 303
  • 304
  • 305
  • 306
  • 307
  • 308
  • 309
  • 310
  • 311
  • 312
  • 313
  • 314
  • 315
  • 316
  • 317
  • 318
  • 319
  • 320
  • 321
  • 322
  • 323
  • 324
  • 325
  • 326
  • 327
  • 328
  • 329
  • 330
  • 331
  • 332
  • 333
  • 334
  • 335
  • 336
  • 337
  • 338
  • 339
  • 340
  • 341
  • 342
  • 343
  • 344
  • 345
  • 346
  • 347
  • 348
  • 349
  • 350
  • 351
  • 352
  • 353
  • 354
  • 355
  • 356
  • 357
  • 358
  • 359
  • 360
  • 361
  • 362
  • 363
  • 364
  • 365
  • 366
  • 367
  • 368
  • 369
  • 370
  • 371
  • 372
  • 373
  • 374
  • 375
  • 376
  • 377
  • 378
  • 379
  • 380
  • 381
  • 382
  • 383
  • 384
  • 385
  • 386
  • 387
  • 388
  • 389
  • 390
  • 391
  • 392
  • 393
  • 394
  • 395
  • 396
  • 397
  • 398
  • 399
  • 400
  • 401
  • 402
  • 403
  • 404
  • 405
  • 406
  • 407
  • 408
  • 409
  • 410
  • 411
  • 412
  • 413
  • 414
  • 415
  • 416
  • 417
  • 418
  • 419
  • 420
  • 421
  • 422
  • 423
  • 424
  • 425
  • 426
  • 427
  • 428
  • 429
  • 430
  • 431
  • 432
  • 433
  • 434
  • 435
  • 436
  • 437
  • 438
  • 439
  • 440
  • 441
  • 442
  • 443
  • 444
  • 445
  • 446
  • 447
  • 448
  • 449
  • 450
  • 451
  • 452
  • 453
  • 454
  • 455
  • 456
  • 457
  • 458
  • 459
  • 460
  • 461
  • 462
  • 463
  • 464
  • 465
  • 466
  • 467
  • 468
  • 469
  • 470
  • 471
  • 472
  • 473
  • 474
  • 475
  • 476
  • 477
  • 478
  • 479
  • 480
  • 481
  • 482
  • 483
  • 484
  • 485
  • 486
  • 487
  • 488
  • 489
  • 490
  • 491
  • 492
  • 493
  • 494
  • 495
  • 496
  • 497
  • 498
  • 499
  • 500
  • 501
  • 502
  • 503
  • 504
  • 505
  • 506
  • 507
  • 508
  • 509
  • 510
  • 511
  • 512
  • 513
  • 514
  • 515
  • 516
  • 517
  • 518
  • 519
  • 520
  • 521
  • 522
  • 523
  • 524
  • 525
  • 526
  • 527
  • 528
  • 529
  • 530
  • 531
  • 532
  • 533
  • 534
  • 535
  • 536
  • 537
  • 538
  • 539
  • 540
  • 541
  • 542
  • 543
  • 544
  • 545
  • 546

调用方法

//全局变量定义方式
struct PID **pid_vector;

//main函数中初始化

     int rule_base[][qf_default] = {
            //delta kp rule base
            {PB, PB, PM, PM, PS, ZO, ZO},
            {PB, PB, PM, PS, PS, ZO, NS},
            {PM, PM, PM, PS, ZO, NS, NS},
            {PM, PM, PS, ZO, NS, NM, NM},
            {PS, PS, ZO, NS, NS, NM, NM},
            {PS, ZO, NS, NM, NM, NM, NB},
            {ZO, ZO, NM, NM, NM, NB, NB},
            //delta ki rule base
            {NB, NB, NM, NM, NS, ZO, ZO},
            {NB, NB, NM, NS, NS, ZO, ZO},
            {NB, NM, NS, NS, ZO, PS, PS},
            {NM, NM, NS, ZO, PS, PM, PM},
            {NM, NS, ZO, PS, PS, PM, PB},
            {ZO, ZO, PS, PS, PM, PB, PB},
            {ZO, ZO, PS, PM, PM, PB, PB},
            //delta kd rule base
            {PS, NS, NB, NB, NB, NM, PS},
            {PS, NS, NB, NM, NM, NS, ZO},
            {ZO, NS, NM, NM, NS, NS, ZO},
            {ZO, NS, NS, NS, NS, NS, ZO},
            {ZO, ZO, ZO, ZO, ZO, ZO, ZO},
            {PB, PS, PS, PS, PS, PS, PB},
            {PB, PM, PM, PM, PS, PS, PB}};

     // Default parameters of membership function
     int mf_params[4 * qf_default] = {-3, -3, -2, 0,
                                     -3, -2, -1, 0,
                                     -2, -1,  0, 0,
                                     -1,  0,  1, 0,
                                      0,  1,  2, 0,
                                      1,  2,  3, 0,
                                      2,  3,  3, 0};

     float fuzzy_pid_params[1][pid_params_count] = {{25.4597502f,  10.0053997f,    15.59500027f,    1800, 0, 0, 1}};

     struct PID **subpid_vector = fuzzy_pid_vector_init(fuzzy_pid_params, 4.0f, 4, 1, 0, mf_params, rule_base, 1);

     pid_vector=subpid_vector;
     
//中断中调用
        control_uk = fuzzy_pid_control(Voltage_Real, pid.Ref, pid_vector[0]);
        if(control_uk<150)
            control_uk=150;
        else if (control_uk>2800)
            control_uk=2800;

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/491730
推荐阅读
相关标签
  

闽ICP备14008679号