当前位置:   article > 正文

PostgreSQL 10.1 手册_部分 II. SQL 语言_第 9 章 函数和操作符_9.20. 聚集函数

mode() within group (order by sort_expression)

9.20. 聚集函数

聚集函数从一个输入值的集合计算一个单一结果。内建的通用聚集函数被列在表 9.52中,统计信息聚合函数列在表 9.53中。内建的组内顺序集聚集函数被列在表 9.54中, 而内置的组内假设集函数列在表 9.55中。分组操作,这与聚集函数有密切联系,被列在表 9.56中。聚集函数的特殊语法考虑在第 4.2.7 节中解释。更多介绍性信息请参考第 2.7 节

表 9.52. 通用聚集函数

函数参数类型返回类型局部模式描述
array_agg(expression) 任何非数组类型参数类型的数组No输入值(包括空)被连接到一个数组
array_agg(expression)任何数组类型和参数数据类型一样No级联到更高维数组的输入数组(输入必须都具有相同的维度,不能为空或NULL)
avg(expression) smallintintbigintrealdouble precisionnumericinterval 对于任何整数类型参数是numeric,对于一个浮点参数是double precision,否则和参数数据类型相同Yes所有输入值的平均值(算术平均)
bit_and(expression) smallintintbigintbit 与参数数据类型相同Yes所有非空输入值的按位与,如果没有非空值则结果是空值
bit_or(expression) smallintintbigint, or bit 与参数数据类型相同Yes所有非空输入值的按位或,如果没有非空值则结果是空值
bool_and(expression) boolboolYes如果所有输入值为真则结果为真,否则为假
bool_or(expression) boolboolYes至少一个输入值为真时结果为真,否则为假
count(*)  bigintYes输入的行数
count(expression)anybigintYes expression值非空的输入行的数目
every(expression) boolboolYes等价于bool_and
json_agg(expression) anyjsonNo将值聚集成一个 JSON 数组
jsonb_agg(expression) anyjsonbNo将值聚集成一个JSON数组
json_object_agg(namevalue) (any, any)jsonNo将名字/值对聚集成一个 JSON 对象
jsonb_object_agg(namevalue) (any, any)jsonbNo将名字/值对聚集成一个JSON对象
max(expression) 任意数字、字符串,日期/时间,网络,或枚举类型或这些类型数组与参数数据类型相同Yes所有输入值中expression的最大值
min(expression) 任意数字、字符串,日期/时间,网络,或枚举类型或这些类型数组与参数数据类型相同Yes所有输入值中expression的最小值
string_agg(expression,delimiter) (texttext) 或 (byteabytea)与参数数据类型相同No输入值连接成一个串,用定界符分隔
sum(expression) smallintint、 bigintrealdouble precisionnumeric、 intervalmoney smallintint参数是bigint,对bigint参数是numeric,否则和参数数据类型相同Yes所有输入值的expression的和
xmlagg(expression) xmlxmlNo连接 XML 值(参见第 9.14.1.7 节

请注意,除了count以外,这些函数在没有行被选中时返回空值。尤其是sum函数在没有输入行时返回空值,而不是零,并且array_agg在这种情况返回空值而不是一个空数组。必要时可以用coalesce把空值替换成零或一个空数组。

支持局部模式的聚集函数有资格参与到各种优化中, 例如并行聚集。

注意

布尔聚集bool_andbool_or对应于标准的 SQL 聚集everyanysome。而对于anysome,似乎在标准语法中有一个歧义:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

如果子查询返回一行有一个布尔值的结果,这里的ANY可以被认为是引入一个子查询,或者是作为一个聚集函数。因而标准的名称不能指定给这些聚集。

注意

在把count聚集应用到整个表上时,习惯于使用其他 SQL 数据管理系统的用户可能会对它的性能感到失望。一个如下的查询:

SELECT count(*) FROM sometable;

将会要求与整个表大小成比例的工作:PostgreSQL将需要扫描整个表或者整个包含表中所有行的索引。

与相似的用户定义的聚集函数一样,聚集函数array_agg、 json_aggjsonb_agg、 json_object_aggjsonb_object_aggstring_aggxmlagg会依赖输入值的顺序产生有意义的不同结果值。这个顺序默认是不用指定的,但是可以在聚集调用时使用ORDER BY子句进行控制,如第 4.2.7 节中所示。作为一种选择,从一个排序号的子查询来提供输入值通常会有帮助。例如:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

但是在 SQL 标准中不允许这种语法,并且不能被移植到其他数据库系统。

表 9.53展示了通常被用在统计分析中的聚集函数(这些被隔离出来是为了不和常用聚集混淆)。其中描述提到了N,它表示对应于所有非空输入表达式的输入行的数目。在所有情况中,如果计算是无意义的,将会返回空值,例如当N为零。

表 9.53. 用于统计的聚集函数

函数参数类型返回类型局部模式描述
corr(YX) double precisiondouble precisionYes相关系数
covar_pop(YX) double precisiondouble precisionYes总体协方差
covar_samp(YX) double precisiondouble precisionYes样本协方差
regr_avgx(YX) double precisiondouble precisionYes自变量的平均值 (sum(X)/N
regr_avgy(YX) double precisiondouble precisionYes因变量的平均值 (sum(Y)/N
regr_count(YX) double precisionbigintYes两个表达式都不为空的输入行的数目
regr_intercept(YX) double precisiondouble precisionYes由(XY)对决定的最小二乘拟合的线性方程的 y截距
regr_r2(YX) double precisiondouble precisionYes相关系数的平方
regr_slope(YX) double precisiondouble precisionYes由(XY)对决定的最小二乘拟合的线性方程的斜率
regr_sxx(YX) double precisiondouble precisionYes sum(X^2) - sum(X)^2/N(自变量的平方和
regr_sxy(YX) double precisiondouble precisionYes sum(X*Y) - sum(X) * sum(Y)/N(自变量乘以因变量的积之合
regr_syy(YX) double precisiondouble precisionYes sum(Y^2) - sum(Y)^2/N(因变量的平方和
stddev(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes stddev_samp的历史别名
stddev_pop(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes输入值的总体标准偏差
stddev_samp(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes输入值的样本标准偏差
variance(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes var_samp的历史别名
var_pop(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes输入值的总体方差(总体标准偏差的平方)
var_samp(expression) smallintint、 bigintrealdouble precisionnumeric 浮点参数为double precision,否则为numeric Yes输入值的样本方差(样本标准偏差的平方)

表 9.54展示了一些使用 有序集聚集语法的聚集函数。这些函数有时也被称为 逆分布函数。

表 9.54. 有序集聚集函数

函数直接参数类型聚集参数类型返回类型局部模式描述
mode() WITHIN GROUP (ORDER BY sort_expression) 任何可排序类型与排序表达式相同No返回最频繁的输入值(如果有多个频度相同的值就选第一个)
percentile_cont(fraction) WITHIN GROUP (ORDER BY sort_expression) double precision double precision或者interval 与排序表达式相同No连续百分率:返回一个对应于排序中指定分数的值,如有必要就在相邻的输入项之间插值
percentile_cont(fractions) WITHIN GROUP (ORDER BY sort_expression)double precision[] double precision或者interval 排序表达式的类型的数组No多重连续百分率:返回一个匹配fractions参数形状的结果数组, 其中每一个非空元素都用对应于那个百分率的值替换
percentile_disc(fraction) WITHIN GROUP (ORDER BY sort_expression) double precision一种可排序类型与排序表达式相同No离散百分率:返回第一个在排序中位置等于或者超过指定分数的输入值
percentile_disc(fractions) WITHIN GROUP (ORDER BY sort_expression)double precision[]任何可排序类型排序表达式的类型的数组No多重离散百分率:返回一个匹配fractions参数形状的结果数组, 其中每一个非空元素都用对应于那个百分率的输入值替换

所有列在表 9.54中的聚集会忽略它们的已 排序输入中的空值。对那些有一个fraction参数的聚 集来说,该分数值必须位于 0 和 1 之间,否则会抛出错误。不过,一个空分数值会 产生一个空结果。

每个列在表 9.55中的聚集都与一个定义在 第 9.21 节中的同名窗口函数相关联。在每种情况中,聚集 结果的计算方法是:假设根据args构建的假想行已 经被增加到从sorted_args计算得到的已排序行分组中, 然后用相关联的窗口函数针对该行返回的值就是聚集的结果。

表 9.55. 假想集聚集函数

函数直接参数类型聚集参数类型返回类型局部模式描述
rank(args) WITHIN GROUP (ORDER BY sorted_args) VARIADIC "any" VARIADIC "any" bigintNo假想行的排名,为重复的行留下间隔
dense_rank(args) WITHIN GROUP (ORDER BY sorted_args) VARIADIC "any" VARIADIC "any" bigintNo假想行的排名,不留间隔
percent_rank(args) WITHIN GROUP (ORDER BY sorted_args) VARIADIC "any" VARIADIC "any" double precisionNo假想行的相对排名,范围从 0 到 1
cume_dist(args) WITHIN GROUP (ORDER BY sorted_args) VARIADIC "any" VARIADIC "any" double precisionNo假想行的相对排名,范围从 1/N 到 1

对于这些假想集聚集的每一个,args中给定的直接参数 列表必须匹配sorted_args中给定的聚集参数的 数量和类型。与大部分的内建聚集不同,这些聚集并不严格,即它们不会丢弃包含空值 的输入行。空值的排序根据ORDER BY子句中指定的规则进行。

表 9.56. 分组操作

函数返回类型描述
GROUPING(args...) integer整数位掩码表示当前分组集中不包含的参数

分组操作与分组集合一起(参见第 7.2.4 节)区分结果行。 这个GROUPING操作的参数实际上并没有进行评估, 但它们必须完全匹配关联查询级别的GROUP BY子句中的表达式。 Bit连同最右边参数是最不重要的一点; 如果对应的表达式被包含在分组集生成的结果行的分组条件中,那么每位是0, 如果不是,则为1。比如:

=> SELECT * FROM items_sold;
 make  | model | sales
-------+-------+-------
 Foo   | GT    |  10
 Foo   | Tour  |  20 
 Bar   | City  |  15
 Bar   | Sport |  5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY ROLLUP(make,model);
 make  | model | grouping | sum
-------+-------+----------+-----
 Foo   | GT    |        0 | 10
 Foo   | Tour  |        0 | 20
 Bar   | City  |        0 | 15
 Bar   | Sport |        0 | 5
 Foo   |       |        1 | 30
 Bar   |       |        1 | 20
       |       |        3 | 50
(7 rows)

本文转自PostgreSQL中文社区,原文链接:9.20. 聚集函数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/492991
推荐阅读
相关标签
  

闽ICP备14008679号