当前位置:   article > 正文

埃氏筛法-筛选素数_素数筛

素数筛

某些题目可能需要求得n以内的所有素数
假设如下遍历一个个判定是否素数, 当n较大可能超时

bool is_prime(int n)
{
	for(int i = 2; i * i <= n; i++)
		if(n % i == 0) return false;
	return n != 1;			//1是例外
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

埃氏筛法
将2到n范围内的数字全部记录下来, 此时最小数字2是素数, 将数字中2的倍数全部删除, 此时最小数字是3, 将数字中3的倍数全部删除, 以此类推, 得到n范围内的全部素数。时间复杂度仅为O(nloglogn).

int prime[maxn];    //用于保存maxn以内的所有素数
bool is_prime[maxn + 1];		//is_prime[i] == true, i为素数

//函数返回n以内的素数个数
int get(int n)
{
	int p = 0;
	fill(is_prime + 2, is_prime + n + 1, true);			//将2到n的范围内设置为true, 因为0, 1 非素数
	for(int i = 2; i <= n; i++)
	{
		if(is_prime[i])
		{
			prime[p++] = i;
			for(int j = 2 * i; j <= n; j += i) is_prime[j] = false;
		}
	}

	return p;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/516068
推荐阅读
相关标签
  

闽ICP备14008679号