当前位置:   article > 正文

leetcode刷题---热门百题---跳跃游戏---贪心算法_leetcode 最小跳跃

leetcode 最小跳跃

给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

判断你是否能够到达最后一个下标。

示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。

示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。

提示:

1 <= nums.length <= 3 * 104
0 <= nums[i] <= 105
  • 1
  • 2

这题之前做过,和题解的思路是差不多的,但是那时候写的很臃肿,依稀记得还写了两层for。。。那时候的写法好像是第二层for遍历当前能到达的距离,然后选取能到达最远的那一个作为下一次第一层for遍历的位置
现在的写法其实就是每个数都遍历,不超过最远能达到距离的时候就进入判断,维护最远能到达距离

class Solution {
    public boolean canJump(int[] nums) {
        int rightmost = nums[0];
        int n = nums.length;

        for (int i = 0; i < n; i++) {
            if (i <= rightmost) {
                rightmost = Math.max(rightmost, i + nums[i]);
                if (rightmost >= n - 1) {
                    return true;
                }
            } else {
                return false;
            }
        }
        return false;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

思路就来自于题解

题解

在这里插入图片描述在这里插入图片描述

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/jump-game
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

跳跃游戏Ⅱ

给你一个非负整数数组 nums ,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

假设你总是可以到达数组的最后一个位置。

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

提示:

1 <= nums.length <= 104
0 <= nums[i] <= 1000
  • 1
  • 2

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/jump-game-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路

和跳跃游戏Ⅰ的思路基本相似,同样也是一个变量来记录最远能到达的距离,只不过现在需要多一个变量来记录上一步最远能到达的距离。当我们到达了上一步最远能到达的距离的时候,步数就要加一,同时上一步最远能到达的距离数据用最远能到达的距离更新数据。

这里需要理解的是遍历之所以不用遍历最后一步,是因为题目给的设定是一定可以到达最后一步的。说明在最后一步之前的最远能到达距离已经超过或者刚好是最后一步了。如果我们会遍历到最后一步而在这之前的最远能到达距离又刚好是最后一步的话,那么就会触发if的条件从而导致浪费了一步(即到达最后一步之后还向前了)

代码

class Solution {
    public int jump(int[] nums) {
        int rightmost = nums[0];
        int steps = 0;
        int end = 0;
        
        for (int i = 0; i < nums.length - 1; i++) {
            rightmost = Math.max(rightmost, nums[i] + i);
            if (i == end) {
                end = rightmost;
                steps++;
            }
        }
        return steps;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/518706
推荐阅读
相关标签
  

闽ICP备14008679号