赞
踩
由于课题原因,最近在学习torch对于轴承故障检测的相关知识,但第一步读取数据以及数据的划分就难到了我,在网上查找相关资料,也没有完整的代码,于是只能东拼西凑,修修改改,最后勉强凑出来一个可以一用的代码,放在这里保存一下。
def open_data(bath_path,key_num):
path = bath_path + str(key_num) + ".mat"
str1 = "X" + "%03d"%key_num + "_DE_time"
data = scio.loadmat(path)
data = data[str1]
return data
def deal_data(data,length,label): data = np.reshape(data,(-1)) num = len(data)//length data = data[0:num*length] data = np.reshape(data,(num,length)) """ 最大值绝对值标准化(MaxAbs)即根据最大值的绝对值进行标准化,假设原转换的数据为x,新数据为x' 那么x'=x/|max|,其中max为x所在列的最大值。 MaxAbs方法跟Max-Min用法类似,也是将数据落入一定区间,但该方法的数据区间为[-1,1]。 MaxAbs也具有不破坏原有数据分布结构的特点,因此也可以用于稀疏数据、稀疏的CSR或CSC矩阵。 """ maxabs_scaler = preprocessing.MaxAbsScaler() data = maxabs_scaler.fit_transform(np.transpose(data,[1,0])) data = np.transpose(data,[1,0]) label = np.ones((num,1))*label return np.column_stack((data,label))
def split_data(data,split_rate):
length = len(data)
num1 = int(length*split_rate[0])
num2 = int(length*split_rate[1])
index1 = random.sample(range(num1),num1)
train = data[index1]
data = np.delete(data,index1,axis=0)
index2 = random.sample(range(num2),num2)
eval = data[index2]
test = np.delete(data,index2,axis=0)
return train,eval,test
def load_data(num = 90,length = 1280,hp = [0,1,2],fault_diameter = [0.007,0.028,0.021],split_rate = [0.7,0.2,0.1]): #num 为每类故障样本数量,length为样本长度,hp为负载大小,可取[0,1,2,3],fauit_diameter为故障程度,可取[0.007,0.014,0.021] #split_rate为训练集,验证集和测试集划分比例。取值从0-1。 #bath_path1 为西储大学数据集中,正常数据的文件夹路径 #bath_path2 为西储大学数据集中,12K采频数据的文件夹路径 bath_path1 = r"F:\data\cwru\Normal Baseline Data\\" bath_path2 = r"F:\data\cwru\12k Drive End Bearing Fault Data\\" data_list = [] label = 0 # 正常数据 # path1 = bath_path1 + str(97+i) + ".mat" # normal_data = scio.loadmat(path1) # str1 = "X0" + str(97+i) + "_DE_time" normal_data = open_data(bath_path1, 97) data = deal_data(normal_data, length, label=label) data_list.append(data) for i in hp: #故障数据 for j in fault_diameter: if j == 0.007: inner_num = 105 ball_num = 118 outer_num = 130 elif j == 0.014: inner_num = 169 ball_num = 185 outer_num = 197 else: inner_num = 209 ball_num = 222 outer_num = 234 inner_data = open_data(bath_path2,inner_num + i) inner_data = deal_data(inner_data,length,label + 1) data_list.append(inner_data) ball_data = open_data(bath_path2,ball_num + i) ball_data = deal_data(ball_data,length,label + 2) data_list.append(ball_data) outer_data = open_data(bath_path2,outer_num + i) outer_data = deal_data(outer_data,length,label + 3) data_list.append(outer_data) label = label + 3 #保持每类数据数据量相同 num_list = [] for i in data_list: num_list.append(len(i)) min_num = min(num_list) if num > min_num: print("每类数量超出上限,最大数量为:%d" %min_num) min_num = min(num,min_num) #划分训练集,验证集和测试集,并随机打乱顺序 train = [] eval = [] test = [] for data in data_list: data = data[0:min_num,:] a,b,c = split_data(data,split_rate) train.append(a) eval.append(b) test.append(c) train = np.reshape(train,(-1,length+1)) train = train[random.sample(range(len(train)),len(train))] train_data = train[:,0:length] train_label = torch.zeros(len(train),10).scatter_(1,torch.LongTensor(train[:,length]).unsqueeze(1),1) eval = np.reshape(eval,(-1,length+1)) eval = eval[random.sample(range(len(eval)),len(eval))] eval_data = eval[:,0:length] eval_label = torch.zeros(len(eval), 10).scatter_(1, torch.LongTensor(eval[:,length]).unsqueeze(1),1) test = np.reshape(test,(-1,length+1)) test = test[random.sample(range(len(test)),len(test))] test_data = test[:,0:length] test_label = torch.zeros(len(test), 10).scatter_(1, torch.LongTensor(test[:,length]).unsqueeze(1),1) return train_data,train_label,eval_data,eval_label,test_data,test_label
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。