当前位置:   article > 正文

K8s源码分析(二)-K8s调度队列介绍

K8s源码分析(二)-K8s调度队列介绍

本文首发在个人博客上,欢迎来踩!
本次分析参考的K8s版本是

调度队列简介

这里是官方对于K8s中调度队列的介绍,很值得一看:Scheduling queue in kube-scheduler整体的架构如下图所示。

请添加图片描述

简单来说K8s中的调度队列主要有3种:

  • ActiveQ(heap结构):在每个调度周期开始时都会从这里取出一个Pod尝试调度。一开始提交的所有没有指定.spec.nodeName的Pod都会发送到这里,也会接收来自unschedulableQ和BackoffQ刷新来的pod。默认的排序规则是按照优先级进行排列,高优先级的Pod在前面。
  • UnschedulableQ(Map结构):存储调度失败的Pod,以等待资源更新、其他相关Pod调度成功等事件,从而将其的Pod其进行重调度。
  • BackoffQ(heap结构):用来暂时退避的队列,默认的排列规则是按退避时间的长度进行排序,需要退避的时间短的Pod在前面。为了防止Pod频繁的重调度,每个Pod都会记录自己的重调度次数,退避时间随着每次失败的调度尝试呈指数增长,直到达到最大值,例如尝试失败 3 次的 Pod 的目标退避超时设置为 curTime + 2s^3 (8s)。注意有两种情况下Pod会进入到BackoffQ队列中:
    • unscheduleableQ会定时对其中的所有pod进行重调度,那么就需要计算各个pod是否退避了足够的时间,如果没有就放入到BackoffQ中再退避一段时间。
    • 如果一个Pod调度失败时,正好这时又异步地发生了资源变更事件(p.moveRequestCycle **>=** podSchedulingCycle )(schedulingCycle 是当前调度的周期,ActiveQ队列每pop一个pod,就加1,moveRequestCycle是事件发生时schedulingCycle 的值),那么就不会放入UnschedulableQ中,而是会直接放入到BackoffQ中。

调度队列机制有两个在后台运行的定期刷新 go协程,负责将 pod 移动到活动队列,后续也将详细介绍相关代码:

  • **flushUnschedulablePodsLeftover:**每 30 秒运行一次,将 Pod 从UnschedulableQ中移动,以允许未由任何事件移动的不可调度的 Pod 再次重试。
  • **flushBackoffQCompleted:**每1秒运行一次,将BackoffQ中已经回避了足够久的Pod移动到ActiveQ队列中

移动请求(move request)会触发一个事件,该事件负责将 Pod 从UnschedulableQ移动到ActiveQ或BackoffQ。集群中许多事件可以触发移动请求的发生,包括了 Pod、节点、服务、PV、PVC、存储类和 CSI 节点的更改。例如当某些pod被调度时,UnschedulableQ中与其具有亲和性要求而导致之前无法调度的pod就会被移动出去,或者当某个新node加入时,原本因为资源不够导致无法调度的Pod也会被移动出去。

调度队列源代码分析

队列初始化

Scheduler中的调度队列SchedulingQueueinternalqueue.SchedulingQueue类型,该类型的实现在pkg/scheduler/internal/queue/scheduling_queue.go:92,如下。

// SchedulingQueue is an interface for a queue to store pods waiting to be scheduled.
// The interface follows a pattern similar to cache.FIFO and cache.Heap and
// makes it easy to use those data structures as a SchedulingQueue.
type SchedulingQueue interface {
	framework.PodNominator
	Add(pod *v1.Pod) error
	// Activate moves the given pods to activeQ iff they're in unschedulablePods or backoffQ.
	// The passed-in pods are originally compiled from plugins that want to activate Pods,
	// by injecting the pods through a reserved CycleState struct (PodsToActivate).
	Activate(pods map[string]*v1.Pod)
	// AddUnschedulableIfNotPresent adds an unschedulable pod back to scheduling queue.
	// The podSchedulingCycle represents the current scheduling cycle number which can be
	// returned by calling SchedulingCycle().
	AddUnschedulableIfNotPresent(pod *framework.QueuedPodInfo, podSchedulingCycle int64) error
	// SchedulingCycle returns the current number of scheduling cycle which is
	// cached by scheduling queue. Normally, incrementing this number whenever
	// a pod is popped (e.g. called Pop()) is enough.
	SchedulingCycle() int64
	// Pop removes the head of the queue and returns it. It blocks if the
	// queue is empty and waits until a new item is added to the queue.
	Pop() (*framework.QueuedPodInfo, error)
	Update(oldPod, newPod *v1.Pod) error
	Delete(pod *v1.Pod) error
	MoveAllToActiveOrBackoffQueue(event framework.ClusterEvent, preCheck PreEnqueueCheck)
	AssignedPodAdded(pod *v1.Pod)
	AssignedPodUpdated(pod *v1.Pod)
	PendingPods() ([]*v1.Pod, string)
	// Close closes the SchedulingQueue so that the goroutine which is
	// waiting to pop items can exit gracefully.
	Close()
	// Run starts the goroutines managing the queue.
	Run()
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

上述代码定义了其需要的对队列中的元素添加、删除、更新、获取、运行等方法。而其标准实现PriorityQueue

pkg/scheduler/internal/queue/scheduling_queue.go:145 中,首先查看其需要的变量:

// PriorityQueue implements a scheduling queue.
// The head of PriorityQueue is the highest priority pending pod. This structure
// has two sub queues and a additional data structure, namely: activeQ,
// backoffQ and unschedulablePods.
//   - activeQ holds pods that are being considered for scheduling.
//   - backoffQ holds pods that moved from unschedulablePods and will move to
//     activeQ when their backoff periods complete.
//   - unschedulablePods holds pods that were already attempted for scheduling and
//     are currently determined to be unschedulable.
type PriorityQueue struct {
	*nominator

	stop  chan struct{}
	clock clock.Clock

	// pod initial backoff duration.
	podInitialBackoffDuration time.Duration
	// pod maximum backoff duration.
	podMaxBackoffDuration time.Duration
	// the maximum time a pod can stay in the unschedulablePods.
	podMaxInUnschedulablePodsDuration time.Duration

	cond sync.Cond

	// activeQ is heap structure that scheduler actively looks at to find pods to
	// schedule. Head of heap is the highest priority pod.
	activeQ *heap.Heap
	// podBackoffQ is a heap ordered by backoff expiry. Pods which have completed backoff
	// are popped from this heap before the scheduler looks at activeQ
	podBackoffQ *heap.Heap
	// unschedulablePods holds pods that have been tried and determined unschedulable.
	unschedulablePods *UnschedulablePods
	// schedulingCycle represents sequence number of scheduling cycle and is incremented
	// when a pod is popped.
	schedulingCycle int64
	// moveRequestCycle caches the sequence number of scheduling cycle when we
	// received a move request. Unschedulable pods in and before this scheduling
	// cycle will be put back to activeQueue if we were trying to schedule them
	// when we received move request.
	moveRequestCycle int64

	clusterEventMap map[framework.ClusterEvent]sets.String
	// preEnqueuePluginMap is keyed with profile name, valued with registered preEnqueue plugins.
	preEnqueuePluginMap map[string][]framework.PreEnqueuePlugin

	// closed indicates that the queue is closed.
	// It is mainly used to let Pop() exit its control loop while waiting for an item.
	closed bool

	nsLister listersv1.NamespaceLister

	metricsRecorder metrics.MetricAsyncRecorder
	// pluginMetricsSamplePercent is the percentage of plugin metrics to be sampled.
	pluginMetricsSamplePercent int
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

pkg/scheduler/internal/queue/scheduling_queue.go:291 中给出了生成了该队列的初始化方法

// NewPriorityQueue creates a PriorityQueue object.
func NewPriorityQueue(
	lessFn framework.LessFunc,
	informerFactory informers.SharedInformerFactory,
	opts ...Option,
) *PriorityQueue {
	options := defaultPriorityQueueOptions
	if options.podLister == nil {
		options.podLister = informerFactory.Core().V1().Pods().Lister()
	}
	for _, opt := range opts {
		opt(&options)
	}

	comp := func(podInfo1, podInfo2 interface{}) bool {
		pInfo1 := podInfo1.(*framework.QueuedPodInfo)
		pInfo2 := podInfo2.(*framework.QueuedPodInfo)
		return lessFn(pInfo1, pInfo2)
	}

	pq := &PriorityQueue{
		nominator:                         newPodNominator(options.podLister),
		clock:                             options.clock,
		stop:                              make(chan struct{}),
		podInitialBackoffDuration:         options.podInitialBackoffDuration,
		podMaxBackoffDuration:             options.podMaxBackoffDuration,
		podMaxInUnschedulablePodsDuration: options.podMaxInUnschedulablePodsDuration,
		activeQ:                           heap.NewWithRecorder(podInfoKeyFunc, comp, metrics.NewActivePodsRecorder()),
		unschedulablePods:                 newUnschedulablePods(metrics.NewUnschedulablePodsRecorder(), metrics.NewGatedPodsRecorder()),
		moveRequestCycle:                  -1,
		clusterEventMap:                   options.clusterEventMap,
		preEnqueuePluginMap:               options.preEnqueuePluginMap,
		metricsRecorder:                   options.metricsRecorder,
		pluginMetricsSamplePercent:        options.pluginMetricsSamplePercent,
	}
	pq.cond.L = &pq.lock
	pq.podBackoffQ = heap.NewWithRecorder(podInfoKeyFunc, pq.podsCompareBackoffCompleted, metrics.NewBackoffPodsRecorder())
	pq.nsLister = informerFactory.Core().V1().Namespaces().Lister()

	return pq
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

可以看到其包含了许多我们上面介绍的概念,包括activeQunschedulablePodspodBackoffQschedulingCyclemoveRequestCycle

QueuedPodInfo元素介绍

这里也多次出现了QueuedPodInfo这个关键的数据结构,它是Pod中的基础元素,在此进行介绍,其定义在pkg/scheduler/framework/types.go:98 中,包括了PodInfo、添加时间、尝试次数等

// QueuedPodInfo is a Pod wrapper with additional information related to
// the pod's status in the scheduling queue, such as the timestamp when
// it's added to the queue.
type QueuedPodInfo struct {
	*PodInfo
	// The time pod added to the scheduling queue.
	Timestamp time.Time
	// Number of schedule attempts before successfully scheduled.
	// It's used to record the # attempts metric.
	Attempts int
	// The time when the pod is added to the queue for the first time. The pod may be added
	// back to the queue multiple times before it's successfully scheduled.
	// It shouldn't be updated once initialized. It's used to record the e2e scheduling
	// latency for a pod.
	InitialAttemptTimestamp time.Time
	// If a Pod failed in a scheduling cycle, record the plugin names it failed by.
	UnschedulablePlugins sets.String
	// Whether the Pod is scheduling gated (by PreEnqueuePlugins) or not.
	Gated bool
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

PodInfo的定义在pkg/scheduler/framework/types.go:131

// PodInfo is a wrapper to a Pod with additional pre-computed information to
// accelerate processing. This information is typically immutable (e.g., pre-processed
// inter-pod affinity selectors).
type PodInfo struct {
	Pod                        *v1.Pod
	RequiredAffinityTerms      []AffinityTerm
	RequiredAntiAffinityTerms  []AffinityTerm
	PreferredAffinityTerms     []WeightedAffinityTerm
	PreferredAntiAffinityTerms []WeightedAffinityTerm
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Pod的定义在staging/src/k8s.io/api/core/v1/types.go:4202

// Pod is a collection of containers that can run on a host. This resource is created
// by clients and scheduled onto hosts.
type Pod struct {
	metav1.TypeMeta `json:",inline"`
	// Standard object's metadata.
	// More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#metadata
	// +optional
	metav1.ObjectMeta `json:"metadata,omitempty" protobuf:"bytes,1,opt,name=metadata"`

	// Specification of the desired behavior of the pod.
	// More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
	// +optional
	Spec PodSpec `json:"spec,omitempty" protobuf:"bytes,2,opt,name=spec"`

	// Most recently observed status of the pod.
	// This data may not be up to date.
	// Populated by the system.
	// Read-only.
	// More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status
	// +optional
	Status PodStatus `json:"status,omitempty" protobuf:"bytes,3,opt,name=status"`
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

ActiveQ源代码介绍

从初始化代码中可以看到ActiveQ是一个heap,其相关定义在pkg/scheduler/internal/heap/heap.go

// Heap is a producer/consumer queue that implements a heap data structure.
// It can be used to implement priority queues and similar data structures.
type Heap struct {
	// data stores objects and has a queue that keeps their ordering according
	// to the heap invariant.
	data *data
	// metricRecorder updates the counter when elements of a heap get added or
	// removed, and it does nothing if it's nil
	metricRecorder metrics.MetricRecorder
}
// data is an internal struct that implements the standard heap interface
// and keeps the data stored in the heap.
type data struct {
	// items is a map from key of the objects to the objects and their index.
	// We depend on the property that items in the map are in the queue and vice versa.
	items map[string]*heapItem
	// queue implements a heap data structure and keeps the order of elements
	// according to the heap invariant. The queue keeps the keys of objects stored
	// in "items".
	queue []string

	// keyFunc is used to make the key used for queued item insertion and retrieval, and
	// should be deterministic.
	keyFunc KeyFunc
	// lessFunc is used to compare two objects in the heap.
	lessFunc lessFunc
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

可以看到他是用queue实现了一个heap。

ActiveQ的默认排序代码在pkg/scheduler/framework/plugins/queuesort/priority_sort.go:42中,即按优先级进行排序,如果优先级相同就提交时间的早晚进行排序。

// Less is the function used by the activeQ heap algorithm to sort pods.
// It sorts pods based on their priority. When priorities are equal, it uses
// PodQueueInfo.timestamp.
func (pl *PrioritySort) Less(pInfo1, pInfo2 *framework.QueuedPodInfo) bool {
	p1 := corev1helpers.PodPriority(pInfo1.Pod)
	p2 := corev1helpers.PodPriority(pInfo2.Pod)
	return (p1 > p2) || (p1 == p2 && pInfo1.Timestamp.Before(pInfo2.Timestamp))
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

UnschedulableQ源代码介绍

UnschedulableQ进行初始化的具体代码在pkg/scheduler/internal/queue/scheduling_queue.go:998

// newUnschedulablePods initializes a new object of UnschedulablePods.
func newUnschedulablePods(unschedulableRecorder, gatedRecorder metrics.MetricRecorder) *UnschedulablePods {
	return &UnschedulablePods{
		podInfoMap:            make(map[string]*framework.QueuedPodInfo),
		keyFunc:               util.GetPodFullName,
		unschedulableRecorder: unschedulableRecorder,
		gatedRecorder:         gatedRecorder,
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

其具体的定义代码在pkg/scheduler/internal/queue/scheduling_queue.go:939 ,

// UnschedulablePods holds pods that cannot be scheduled. This data structure
// is used to implement unschedulablePods.
type UnschedulablePods struct {
	// podInfoMap is a map key by a pod's full-name and the value is a pointer to the QueuedPodInfo.
	podInfoMap map[string]*framework.QueuedPodInfo
	keyFunc    func(*v1.Pod) string
	// unschedulableRecorder/gatedRecorder updates the counter when elements of an unschedulablePodsMap
	// get added or removed, and it does nothing if it's nil.
	unschedulableRecorder, gatedRecorder metrics.MetricRecorder
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

可以看到他没有进行heap的包装,而是直接采用Map结构进行保存。

BackoffQ源代码介绍

BackoffQ也是一个heap,与ActiveQ不同的一点在于排序函数不同,其排序函数的定义在pkg/scheduler/internal/queue/scheduling_queue.go:888

func (p *PriorityQueue) podsCompareBackoffCompleted(podInfo1, podInfo2 interface{}) bool {
	pInfo1 := podInfo1.(*framework.QueuedPodInfo)
	pInfo2 := podInfo2.(*framework.QueuedPodInfo)
	bo1 := p.getBackoffTime(pInfo1)
	bo2 := p.getBackoffTime(pInfo2)
	return bo1.Before(bo2)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

getBackoffTime的定义在pkg/scheduler/internal/queue/scheduling_queue.go:911中,即计算完成避让的时间

// getBackoffTime returns the time that podInfo completes backoff
func (p *PriorityQueue) getBackoffTime(podInfo *framework.QueuedPodInfo) time.Time {
	duration := p.calculateBackoffDuration(podInfo)
	backoffTime := podInfo.Timestamp.Add(duration)
	return backoffTime
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

可以看到队列排序时会将完成避让最早的pod放在前面。

然后再看其是如何计算避让时间的,在pkg/scheduler/internal/queue/scheduling_queue.go

// calculateBackoffDuration is a helper function for calculating the backoffDuration
// based on the number of attempts the pod has made.
func (p *PriorityQueue) calculateBackoffDuration(podInfo *framework.QueuedPodInfo) time.Duration {
	duration := p.podInitialBackoffDuration
	for i := 1; i < podInfo.Attempts; i++ {
		// Use subtraction instead of addition or multiplication to avoid overflow.
		if duration > p.podMaxBackoffDuration-duration {
			return p.podMaxBackoffDuration
		}
		duration += duration
	}
	return duration
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

其计算可以理解为初次为p.podInitialBackoffDuration,每次需要的避让时间都是前一次的两倍,如果计算得到的避让时间大于p.podMaxBackoffDuration/2 ,就将避让时间设置为p.podMaxBackoffDuration

队列弹出待调度的Pod

其代码在pkg/scheduler/internal/queue/scheduling_queue.go:593

// Pop removes the head of the active queue and returns it. It blocks if the
// activeQ is empty and waits until a new item is added to the queue. It
// increments scheduling cycle when a pod is popped.
func (p *PriorityQueue) Pop() (*framework.QueuedPodInfo, error) {
	p.lock.Lock()
	defer p.lock.Unlock()
	for p.activeQ.Len() == 0 {
		// When the queue is empty, invocation of Pop() is blocked until new item is enqueued.
		// When Close() is called, the p.closed is set and the condition is broadcast,
		// which causes this loop to continue and return from the Pop().
		if p.closed {
			return nil, fmt.Errorf(queueClosed)
		}
		p.cond.Wait()
	}
	obj, err := p.activeQ.Pop()
	if err != nil {
		return nil, err
	}
	pInfo := obj.(*framework.QueuedPodInfo)
	pInfo.Attempts++
	p.schedulingCycle++
	return pInfo, nil
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

可以看到如果activeQ中没有需要调度的Pod了那么就会使用p.cond.Wait来进行等待,否则就冲activeQ中Pop一个元素QueuedPodInfo,同时这个QueuedPodInfo 的Attempts会+1,整个队列中的schedulingCycle也会增加。

队列增加新的待调度的Pod

其代码在pkg/scheduler/internal/queue/scheduling_queue.go:398

// Add adds a pod to the active queue. It should be called only when a new pod
// is added so there is no chance the pod is already in active/unschedulable/backoff queues
func (p *PriorityQueue) Add(pod *v1.Pod) error {
	p.lock.Lock()
	defer p.lock.Unlock()

	pInfo := p.newQueuedPodInfo(pod)
	gated := pInfo.Gated
	if added, err := p.addToActiveQ(pInfo); !added {
		return err
	}
	if p.unschedulablePods.get(pod) != nil {
		klog.ErrorS(nil, "Error: pod is already in the unschedulable queue", "pod", klog.KObj(pod))
		p.unschedulablePods.delete(pod, gated)
	}
	// Delete pod from backoffQ if it is backing off
	if err := p.podBackoffQ.Delete(pInfo); err == nil {
		klog.ErrorS(nil, "Error: pod is already in the podBackoff queue", "pod", klog.KObj(pod))
	}
	klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pod), "event", PodAdd, "queue", activeQName)
	metrics.SchedulerQueueIncomingPods.WithLabelValues("active", PodAdd).Inc()
	p.addNominatedPodUnlocked(pInfo.PodInfo, nil)
	p.cond.Broadcast()

	return nil
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

主要是将要加入的pod转化为QueuedPodInfo类型,然后添加到activeQ队列中,还需要检查其他队列中是否有这个pod,如果有就删除,同时做一些日志相关记录,然后还会调用p.cond.Broadcast()来解除上述提到的p.cond.Wait 的等待。

pod调度失败返回队列的处理

当Pod调度失败后,会调用来AddUnschedulableIfNotPresent函数来进行处理,其代码位置在pkg/scheduler/internal/queue/scheduling_queue.go 中。

// AddUnschedulableIfNotPresent inserts a pod that cannot be scheduled into
// the queue, unless it is already in the queue. Normally, PriorityQueue puts
// unschedulable pods in `unschedulablePods`. But if there has been a recent move
// request, then the pod is put in `podBackoffQ`.
func (p *PriorityQueue) AddUnschedulableIfNotPresent(pInfo *framework.QueuedPodInfo, podSchedulingCycle int64) error {
	p.lock.Lock()
	defer p.lock.Unlock()
	pod := pInfo.Pod
	if p.unschedulablePods.get(pod) != nil {
		return fmt.Errorf("Pod %v is already present in unschedulable queue", klog.KObj(pod))
	}

	if _, exists, _ := p.activeQ.Get(pInfo); exists {
		return fmt.Errorf("Pod %v is already present in the active queue", klog.KObj(pod))
	}
	if _, exists, _ := p.podBackoffQ.Get(pInfo); exists {
		return fmt.Errorf("Pod %v is already present in the backoff queue", klog.KObj(pod))
	}

	// Refresh the timestamp since the pod is re-added.
	pInfo.Timestamp = p.clock.Now()

	// If a move request has been received, move it to the BackoffQ, otherwise move
	// it to unschedulablePods.
	for plugin := range pInfo.UnschedulablePlugins {
		metrics.UnschedulableReason(plugin, pInfo.Pod.Spec.SchedulerName).Inc()
	}
	if p.moveRequestCycle >= podSchedulingCycle {
		if err := p.podBackoffQ.Add(pInfo); err != nil {
			return fmt.Errorf("error adding pod %v to the backoff queue: %v", klog.KObj(pod), err)
		}
		klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pod), "event", ScheduleAttemptFailure, "queue", backoffQName)
		metrics.SchedulerQueueIncomingPods.WithLabelValues("backoff", ScheduleAttemptFailure).Inc()
	} else {
		p.unschedulablePods.addOrUpdate(pInfo)
		klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pod), "event", ScheduleAttemptFailure, "queue", unschedulablePods)
		metrics.SchedulerQueueIncomingPods.WithLabelValues("unschedulable", ScheduleAttemptFailure).Inc()

	}

	p.addNominatedPodUnlocked(pInfo.PodInfo, nil)
	return nil
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

这里首先检查了其他队列中是否含有该pod,如果有就返回错误,然后比较moveRequestCyclepodSchedulingCycle ,如果p.moveRequestCycle >= podSchedulingCycle 那就说明在刚刚调度这个pod的时候集群发生了变化,可能现在可以成功调度这个pod了,将其转入backoffQ中,不然就正常加入unschedulableQ中。

flushBackoffQCompleted

在队列运行时会初始化两个go协程,来分别不停检查backoffQunschedulableQ,以及时将相关的Pod移出。代码在pkg/scheduler/internal/queue/scheduling_queue.go:333

// Run starts the goroutine to pump from podBackoffQ to activeQ
func (p *PriorityQueue) Run() {
	go wait.Until(p.flushBackoffQCompleted, 1.0*time.Second, p.stop)
	go wait.Until(p.flushUnschedulablePodsLeftover, 30*time.Second, p.stop)
}
  • 1
  • 2
  • 3
  • 4
  • 5

对于flushBackoffQCompleted即是每1s运行一次,直到接收到p.stop信息。对flushBackoffQCompleted 函数的具体定义在pkg/scheduler/internal/queue/scheduling_queue.go:537中,如下

// flushBackoffQCompleted Moves all pods from backoffQ which have completed backoff in to activeQ
func (p *PriorityQueue) flushBackoffQCompleted() {
	p.lock.Lock()
	defer p.lock.Unlock()
	activated := false
	for {
		rawPodInfo := p.podBackoffQ.Peek()
		if rawPodInfo == nil {
			break
		}
		pInfo := rawPodInfo.(*framework.QueuedPodInfo)
		pod := pInfo.Pod
		if p.isPodBackingoff(pInfo) {
			break
		}
		_, err := p.podBackoffQ.Pop()
		if err != nil {
			klog.ErrorS(err, "Unable to pop pod from backoff queue despite backoff completion", "pod", klog.KObj(pod))
			break
		}
		if err := p.activeQ.Add(pInfo); err != nil {
			klog.ErrorS(err, "Error adding pod to the active queue", "pod", klog.KObj(pInfo.Pod))
		} else {
			klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pod), "event", BackoffComplete, "queue", activeQName)
			metrics.SchedulerQueueIncomingPods.WithLabelValues("active", BackoffComplete).Inc()
			activated = true
		}
	}

	if activated {
		p.cond.Broadcast()
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

其主要内容就是从backOffQ的首个元素开始查看,检查器是否已经过了避让时间,如果过了就将其放入到activeQ队列中,直到首个元素没有达到避让时间或者队列为空。

flushUnschedulablePodsLeftover

flushUnschedulablePodsLeftover每30s运行一次,这部分的代码在pkg/scheduler/internal/queue/scheduling_queue.go:572中,如下

// flushUnschedulablePodsLeftover moves pods which stay in unschedulablePods
// longer than podMaxInUnschedulablePodsDuration to backoffQ or activeQ.
func (p *PriorityQueue) flushUnschedulablePodsLeftover() {
	p.lock.Lock()
	defer p.lock.Unlock()

	var podsToMove []*framework.QueuedPodInfo
	currentTime := p.clock.Now()
	for _, pInfo := range p.unschedulablePods.podInfoMap {
		lastScheduleTime := pInfo.Timestamp
		if currentTime.Sub(lastScheduleTime) > p.podMaxInUnschedulablePodsDuration {
			podsToMove = append(podsToMove, pInfo)
		}
	}

	if len(podsToMove) > 0 {
		p.movePodsToActiveOrBackoffQueue(podsToMove, UnschedulableTimeout)
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

可以看到其主要作用是遍历所有的pod,如果其在unschedulableQ中呆的时间如果超过了最大的p.podMaxInUnschedulablePodsDuration时间,就会将其移出去,至于是移动到activeQ中还是移动到backoffQ中,取决于movePodsToActiveOrBackoffQueue函数,在pkg/scheduler/internal/queue/scheduling_queue.go:771中,如下

// NOTE: this function assumes lock has been acquired in caller
func (p *PriorityQueue) movePodsToActiveOrBackoffQueue(podInfoList []*framework.QueuedPodInfo, event framework.ClusterEvent) {
	activated := false
	for _, pInfo := range podInfoList {
		// If the event doesn't help making the Pod schedulable, continue.
		// Note: we don't run the check if pInfo.UnschedulablePlugins is nil, which denotes
		// either there is some abnormal error, or scheduling the pod failed by plugins other than PreFilter, Filter and Permit.
		// In that case, it's desired to move it anyways.
		if len(pInfo.UnschedulablePlugins) != 0 && !p.podMatchesEvent(pInfo, event) {
			continue
		}
		pod := pInfo.Pod
		if p.isPodBackingoff(pInfo) {
			if err := p.podBackoffQ.Add(pInfo); err != nil {
				klog.ErrorS(err, "Error adding pod to the backoff queue", "pod", klog.KObj(pod))
			} else {
				klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pInfo.Pod), "event", event, "queue", backoffQName)
				metrics.SchedulerQueueIncomingPods.WithLabelValues("backoff", event.Label).Inc()
				p.unschedulablePods.delete(pod, pInfo.Gated)
			}
		} else {
			gated := pInfo.Gated
			if added, _ := p.addToActiveQ(pInfo); added {
				klog.V(5).InfoS("Pod moved to an internal scheduling queue", "pod", klog.KObj(pInfo.Pod), "event", event, "queue", activeQName)
				activated = true
				metrics.SchedulerQueueIncomingPods.WithLabelValues("active", event.Label).Inc()
				p.unschedulablePods.delete(pod, gated)
			}
		}
	}
	p.moveRequestCycle = p.schedulingCycle
	if activated {
		p.cond.Broadcast()
	}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

注意这个函数不仅仅是在flushUnschedulablePodsLeftover中被调用,还会在处理其他移动请求时触发,只不过这里的移动请求是UnschedulableTimeout ,判断到底是如何移动也很容易从代码中看出,如果已经到达了避让时间,就加入到activeQ中,如果没有就加入到backoffQ中,注意到如果有移动进activeQ中,也是需要执行p.cond.Broadcast(),同时注意到这里更新了moveRequestCycleschedulingCycle,这也是其统一更新moveRequestCycle 的地方。

调度队列总结

考虑到调度队列的细节,我们可以用下图来对其进行归纳回顾。

请添加图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/563275
推荐阅读
相关标签
  

闽ICP备14008679号