当前位置:   article > 正文

A*算法分析及例题介绍_a*算法例题

a*算法例题

一、A*算法的基本原理

(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是许多其他问题的常用启发式算法。注意——是最有效的直接搜索算法。

公式表示为: f(n)=g(n)+h(n),其中,
f(n) 是从初始状态经由状态n到目标状态的代价估计,
g(n) 是在状态空间中从初始状态到状态n的实际代价,
h(n) 是从状态n到目标状态的最佳路径的估计代价。
(对于路径搜索问题,状态就是图中的节点,代价就是距离)

h(n)的选取:
保证找到最短路径(最优解的)条件,关键在于估价函数f(n)的选取(或者说h(n)的选取)距离估计与实际值越接近,估价函数取得就越好
我们以d(n)表达状态n到目标状态的距离,那么h(n)的选取大致有如下三种情况:
1、如果h(n)< d(n)到目标状态的实际距离,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
2、如果h(n)=d(n),即距离估计h(n)等于最短距离,那么搜索将严格沿着最短路径进行, 此时的搜索效率是最高的。
3、如果 h(n)>d(n),搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

二、A*算法例题介绍

如下图所示,搜索起点为A,目标点为B的最优路径。注意图中实心方格区域为墙,不可穿越。移动方向仅允许垂直和水平方向移动,每移动一步代价均相同,可设置为1。
在这里插入图片描述
给出搜索过程中每一步中的节点信息(可选择部分中间关键步骤结果进行展示即可)主要包括起点(A)、终点(B)、open表(绿色节点)、closed表(红色节点)、每个节点的计算值(f(n)/g(n)/h(n))。

三、例题理论分析

该题具体实现可以分为如下步骤:1、设置搜索区域;2、设置open list、close list;3、开始搜索;4、路径排序;5、根据f(n)=g(n)+h(n)继续搜索;6、根据搜索结果确定路径。

1、设置搜索区域:将9*9的表格设置为搜索区域,且将表格中的墙壁设置为不可搜索区域。

2、设置open list、close list:将A及其周围区域放入open list,将每次搜索后的f(n)最小的区域放入close list。

3、开始搜索:从起点A开始进行搜索,根据f(n)=g(n)+h(n)来确定相邻区域的f(n)。

4、路径排序:在步骤二将该点相邻可搜索区域内的点进行搜索完成之后,根据f(n)的大小,对这些区域进行排序。

5、继续搜索:在排好序的区域中选择f(n)最小的区域,继续根据f(n)=g(n)+h(n)来对相邻区域进行搜索。并更新open list 和 close list。

6、若相邻区域已经在open list中(即已经被进行搜索过了),则从本区域判断其区域f(n)是否可以更新变得更小。

7、不断重复搜索过程,直到将终点B也放入close list中。

四、程序流程图

在这里插入图片描述

五、启发式函数h(n)的定义

static double hManhattanDistance(Point pnt)
{
return Math.abs(pnt.x - END_PNT.x) + Math.abs(pnt.y - END_PNT.y);
}
  • 1
  • 2
  • 3
  • 4

在实现中,h(n)采用曼哈顿距离,即区域i: (x1,y1)的与区域j: (x2,y2)的距离为:

d(i,j)=|X1-X2|+|Y1-Y2|

六、A*搜索过程中的节点信息

右上角为h(n),左上角为g(n),左下角为f(n)

七、A*算法与A算法、宽度优先的区别

1、A*算法解决方案:见上文。

2、宽度优先搜索算法解决方案:

  1. 首先将起点放入顺序表中;
  2. 从顺序表中读取第一个区域;
  3. 对所读取的区域进行相邻区域搜索;
  4. 判断相邻区域是否为终点,是终点则停止;
  5. 不是终点,则将这些相邻区域放入顺序表;
  6. 重复2-5,直到找到终点为止。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/568311
推荐阅读
相关标签
  

闽ICP备14008679号