赞
踩
Yolov8可用于人脸识别,它可以识别人脸的位置、大小和角度等信息,并对人脸进行精确的识别。通过使用Yolov8,可以实现高效准确的人脸识别,不仅可以应用于安防领域,也可以应用于人脸支付、人脸门禁等场景。
除了人脸识别外,Yolov8还可以用于脸部关键点检测。它可以检测出人脸的各个部位,如眼睛、鼻子、嘴巴等,并预测出它们的坐标位置。这种技术可以被广泛应用于人脸美化、表情识别、虚拟试妆等领域。
Yolov8是一个基于深度学习的模型,它使用卷积神经网络(Convolutional Neural Network)对图像进行处理和特征提取。通过使用深度学习技术,Yolov8可以自动地学习人脸和脸部关键点的特征,从而提高检测的精度和准确度。
Yolov8具有高效准确的检测能力,可以在较短的时间内完成对图像中人脸和脸部关键点的检测任务。同时,Yolov8还可以实现实时检测,可以应用于视频监控、直播等场景。
YOLOv8 脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。
YOLOv8
Face采用了一系列的优化策略,包括网络结构的设计、数据增强和训练技巧等,从而提高了模型的准确性。它能够精确地检测出各种不同姿态、光照和遮挡条件下的人脸。
YOLOv8Face具有较高的实时性能,可以在实时图像和视频流中快速检测人脸。它采用了一种轻量级的网络结构和高效的推理算法,以实现实时的人脸检测。
为了适应不同大小和尺度的人脸,YOLOv8 Face使用了多尺度检测技术。通过在不同尺度下进行检测,可以提高模型对小尺寸人脸的检测能力。
YOLOv8 Face使用了各种数据增强技术,如随机裁剪、旋转和缩放等,以增加训练数据的多样性和丰富性。这有助于提高模型的泛化能力和鲁棒性。
为了提高推理效率,YOLOv8 Face使用了一些优化技术,如模型压缩、量化和推理引擎的优化等。这使得模型可以在嵌入式设备和移动端实现快速的人脸检测。
6.运行 CUDA_VISIBLE_DEVICES="0,1,2,3" python3 train.py --data data/widerface.yaml --cfg models/yolov5s.yaml --weights 'pretrained models'
,进行训练
widerface_evaluat
e文件夹python3 evaluation.py
,进行评估运行下列demo示例,可以帮助我们推理出结果!!!!!!
- import argparse
- import time
- from pathlib import Path
-
- import cv2
- import torch
- import torch.backends.cudnn as cudnn
- from numpy import random
-
- from models.experimental import attempt_load
- from utils.datasets import LoadStreams, LoadImages
- from utils.general import check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, \
- strip_optimizer, set_logging, increment_path
- from utils.plots import plot_one_box
- from utils.torch_utils import select_device, load_classifier, time_synchronized
-
-
- def detect(save_img=False):
- source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
- print('weights: ', weights)
- webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
- ('rtsp://', 'rtmp://', 'http://'))
-
- # Directories
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
-
- # Initialize
- set_logging()
- device = select_device(opt.device)
- half = device.type != 'cpu' # half precision only supported on CUDA
-
- # Load model
- model = attempt_load(weights, map_location=device) # load FP32 model
- imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
- if half:
- model.half() # to FP16
-
- # Second-stage classifier
- classify = False
- if classify:
- modelc = load_classifier(name='resnet101', n=2) # initialize
- modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
-
- # Set Dataloader
- vid_path, vid_writer = None, None
- if webcam:
- view_img = True
- cudnn.benchmark = True # set True to speed up constant image size inference
- dataset = LoadStreams(source, img_size=imgsz)
- else:
- save_img = True
- dataset = LoadImages(source, img_size=imgsz)
-
- # Get names and colors
- names = model.module.names if hasattr(model, 'module') else model.names
- colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
-
- # Run inference
- t0 = time.time()
- img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
- _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
- for path, img, im0s, vid_cap in dataset:
- img = torch.from_numpy(img).to(device)
- img = img.half() if half else img.float() # uint8 to fp16/32
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
- if img.ndimension() == 3:
- img = img.unsqueeze(0)
-
- # Inference
- t1 = time_synchronized()
- pred = model(img, augment=opt.augment)[0]
-
- # Apply NMS
- pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
- t2 = time_synchronized()
-
- # Apply Classifier
- if classify:
- pred = apply_classifier(pred, modelc, img, im0s)
-
- # Process detections
- for i, det in enumerate(pred): # detections per image
- if webcam: # batch_size >= 1
- p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
- else:
- p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
-
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # img.jpg
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
- s += '%gx%g ' % img.shape[2:] # print string
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
- if len(det):
- # Rescale boxes from img_size to im0 size
- det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
-
- # Print results
- for c in det[:, -1].unique():
- n = (det[:, -1] == c).sum() # detections per class
- s += f'{n} {names[int(c)]}s, ' # add to string
-
- # Write results
- for *xyxy, conf, cls in reversed(det):
- if save_txt: # Write to file
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
- with open(txt_path + '.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
-
- if save_img or view_img: # Add bbox to image
- label = f'{names[int(cls)]} {conf:.2f}'
- plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
-
- # Print time (inference + NMS)
- print(f'{s}Done. ({t2 - t1:.3f}s)')
-
- # Stream results
- if view_img:
- cv2.imshow(str(p), im0)
- if cv2.waitKey(1) == ord('q'): # q to quit
- raise StopIteration
-
- # Save results (image with detections)
- if save_img:
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video'
- if vid_path != save_path: # new video
- vid_path = save_path
- if isinstance(vid_writer, cv2.VideoWriter):
- vid_writer.release() # release previous video writer
-
- fourcc = 'mp4v' # output video codec
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
- vid_writer.write(im0)
-
- if save_txt or save_img:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- print(f"Results saved to {save_dir}{s}")
-
- print(f'Done. ({time.time() - t0:.3f}s)')
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', nargs='+', type=str, default='./weights/yolov5s.pt', help='model.pt path(s)')
- parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
- parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--view-img', action='store_true', help='display results')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
- parser.add_argument('--augment', action='store_true', help='augmented inference')
- parser.add_argument('--update', action='store_true', help='update all models')
- parser.add_argument('--project', default='runs/detect', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save results to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- opt = parser.parse_args()
- print(opt)
-
- with torch.no_grad():
- if opt.update: # update all models (to fix SourceChangeWarning)
- for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
- detect()
- strip_optimizer(opt.weights)
- else:
- detect()
总之,YOLOv8 Face项目是一个基于YOLOv8算法的人脸检测项目,具有高准确性、实时性能和多尺度检测等特点。它可以广泛应用于人脸识别、人脸表情分析、人脸属性识别等领域,为人脸相关的应用提供强大的支持。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。