当前位置:   article > 正文

大数据Hive多字节分隔符_hive分隔符

hive分隔符


1 应用场景

1.1 Hive中的分隔符

Hive中默认使用单字节分隔符来加载文本数据,例如逗号、制表符、空格等等,默认的分隔符为\001。根据不同文件的不同分隔符,我们可以通过在创建表时使用 row format delimited fields terminated by ‘单字节分隔符’ 来指定文件中的分割符,确保正确将表中的每一列与文件中的每一列实现一一对应的关系。在这里插入图片描述

在这里插入图片描述

1.2 特殊数据

在实际工作中,我们遇到的数据往往不是非常规范化的数据,例如我们会遇到以下的两种情况
在这里插入图片描述
➢ 上图中每列的分隔符为||,为多字节分隔符
➢ 情况二:数据的字段中包含了分隔符
在这里插入图片描述
➢ 上图中每列的分隔符为空格,但是数据中包含了分割符,时间字段中也有空格
192.168.88.134 [08/Nov/2020:10:44:32 +0800] “GET / HTTP/1.1” 404 951
2.2 问题与需求
2.2.1 问题
基于上述的两种特殊数据,我们如果使用正常的加载数据的方式将数据加载到表中,就会出以下两种错误:
➢ 情况一:加载数据的分隔符为多字节分隔符
➢ 创建表
–如果表已存在就删除表

drop table if exists singer;
--创建表
create table singer(
 id string,--歌手id
 name string,--歌手名称
 country string,--国家
 province string,--省份
 gender string,--性别
 works string--作品
)
--指定列的分隔符为||
row format delimited fields terminated by '||';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

➢ 加载数据
load data local inpath ‘/export/data/test01.txt’ into table singer;

➢ 查看结果
select * from singer;

在这里插入图片描述
➢ 问题
数据发生了错位,没有正确的加载每一列的数据
➢ 原因
Hive中默认只支持单字节分隔符,无法识别多字节分隔符

➢ 情况二:数据中包含了分隔符
➢ 创建表

--如果表存在,就删除表
drop table if exists apachelog;
--创建表
create table apachelog(
 ip string,      --IP地址
 stime string,    --时间
 mothed string,  --请求方式
 url string,     --请求地址
 policy string,  --请求协议
 stat string,    --请求状态
 body string     --字节大小
)
--指定列的分隔符为空格
row format delimited fields terminated by ' ';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

➢ 加载数据
load data local inpath ‘/export/data/apache_web_access.log’ into table apachelog;

➢ 查看结果
select * from apachelog;
在这里插入图片描述
➢ 问题
时间字段被切分成了两个字段,后面所有的字段出现了错位
➢ 原因
时间数据中包含了分隔符,导致Hive认为这是两个字段,但实际业务需求中,为一个字段

2.2 需求

基于上面两种情况的测试发现,当数据中出现了多字节分隔符或者数据中的某个字段包含了分隔符,就会导致数据加载错位的问题。基于出现的问题,我们需要通过特殊的方法来解决该问题,即使当数据中出现多字节分隔符等情况时,Hive也能正确的加载数据,实现列与数据的一一对应。

3 解决方案一:替换分隔符

3.1 方案概述

面对情况一,如果数据中的分隔符是多字节分隔符,可以使用程序提前将数据中的多字节分隔符替换为单字节分隔符,然后使用Hive加载,就可以实现正确加载对应的数据。
例如:原始数据中的分隔符为“||”
在这里插入图片描述

3.2 程序开发

可以在ETL阶段通过一个MapReduce程序,将“||”替换为单字节的分隔符“|”,示例程序如下:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

import java.io.IOException;

/**
 * @ClassName ChangeSplitCharMR
 * @Description TODO MapReduce实现将多字节分隔符转换为单字节符
 * @Create By  itcast
 */
public class ChangeSplitCharMR extends Configured implements Tool {
    public int run(String[] arg) throws Exception {
        /**
         * 构建Job
         */
        Job job = Job.getInstance(this.getConf(),"changeSplit");
        job.setJarByClass(ChangeSplitCharMR.class);

        /**
         * 配置Job
         */
        //input:读取需要转换的文件
        job.setInputFormatClass(TextInputFormat.class);
        Path inputPath = new Path("datas/split/test01.txt");
        FileInputFormat.setInputPaths(job,inputPath);

        //map:调用Mapper
        job.setMapperClass(ChangeSplitMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //reduce:不需要Reduce过程
        job.setNumReduceTasks(0);

        //output
        job.setOutputFormatClass(TextOutputFormat.class);
        Path outputPath = new Path("datas/output/changeSplit");
        TextOutputFormat.setOutputPath(job,outputPath);

        /**
         * 提交Job
         */
        return job.waitForCompletion(true) ? 0 : -1;
    }

    //程序入口
    public static void main(String[] args) throws Exception {
        //调用run
        Configuration conf = new Configuration();
        int status = ToolRunner.run(conf, new ChangeSplitCharMR(), args);
        System.exit(status);
    }

    public static class ChangeSplitMapper extends Mapper<LongWritable,Text,Text,NullWritable>{
        //定义输出的Key
        private Text outputKey = new Text();
        //定义输出的Value
        private NullWritable outputValue = NullWritable.get();

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            //获取每条数据
            String line = value.toString();
            //将里面的||转换为|
            String newLine = line.replaceAll("\\|\\|", "|");
            //替换后的内容作为Key
            this.outputKey.set(newLine);
            //输出结果
            context.write(this.outputKey,this.outputValue);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83

➢ 程序执行结果如下:
在这里插入图片描述

3.3 重新建表加载数据

➢ 重新创建Hive表

--如果表已存在就删除表
drop table if exists singer;
--创建表
create table singer(
 id string,--歌手id
 name string,--歌手名称
 country string,--国家
 province string,--省份
 gender string,--性别
 works string--作品
)
--指定列的分隔符为||
row format delimited fields terminated by '|';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

➢ 在Hive中重新加载数据
load data local inpath ‘/export/data/part-m-00000’ into table singer;

3.4 查看结果

➢ 查看结果
在这里插入图片描述

3.5 总结

在ETL阶段可以直接对数据进行分隔符的替换,通过替换分隔符将多字节分隔符更改为单字节分隔符,就可以解决数据加载的问题,但是这种方式有对应的优缺点,并不是所有的场景适用于该方法。
优点:实现方式较为简单,基于字符串替换即可
缺点:无法满足情况2的需求

4 解决方案二:RegexSerDe正则加载

4.1 方案概述

面对情况一和情况二的问题,Hive中提供了一种特殊的方式来解决,Hive提供了一种特殊的Serde来加载特殊数据的问题,使用正则匹配来加载数据,匹配每一列的数据。
官网地址:https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-ApacheWeblogData
在这里插入图片描述

4.2 什么是SerDe?

Hive的SerDe提供了序列化和反序列化两个功能,SerDe是英文Serialize和Deserilize的组合缩写,用于实现将Hive中的对象进行序列化和将数据进行反序列化。
Serialize就是序列化,用于将Hive中使用的java object转换成能写入hdfs的字节序列,或者其他系统能识别的流文件。Hive中的insert语句用于将数据写入HDFS,所以就会调用序列化实现。Hive中的调用过程如下:
在这里插入图片描述
Deserilize就是反序列化,用于将字符串或者二进制数据流转换成Hive能识别的java object对
象。所有Hive中的Select语句在查询数据时,需要将HDFS中的数据解析为Hive中对象,就需要进行
反序列化。Hive可以方便的将数据加载到表中而不需要对数据进行转换,这样在处理海量数据时可
以节省大量的时间。Hive中的调用过程如下:在这里插入图片描述

4.3 Hive中包含的SerDe

官网地址:https://cwiki.apache.org/confluence/display/Hive/SerDe
在这里插入图片描述
Hive中默认提供了多种SerDe用于解析和加载不同类型的数据文件,常用的有ORCSerde 、RegexSerde、JsonSerDe等。

4.4 RegexSerDe的功能

RegexSerde是Hive中专门为了满足复杂数据场景所提供的正则加载和解析数据的接口,使用RegexSerde可以指定正则表达式加载数据,根据正则表达式匹配每一列数据。上述过程中遇到的情况一和情况二的问题,都可以通过RegexSerDe使用正则表达式来加载实现。

4.5 RegexSerDe解决多字节分隔符

➢ 分析数据格式,构建正则表达式
➢ 原始数据格式
01||周杰伦||中国||台湾||男||七里香

➢ 正则表达式定义每一列
([0-9])\|\|(.)\|\|(.)\|\|(.)\|\|(.)\|\|(.)

➢ 正则校验
在这里插入图片描述
➢ 基于正则表达式,使用RegexSerde建表
–如果表已存在就删除表

drop table if exists singer;
--创建表
create table singer(
 id string,--歌手id
 name string,--歌手名称
 country string,--国家
 province string,--省份
 gender string,--性别
 works string--作品
)
--指定使用RegexSerde加载数据
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
--指定正则表达式
WITH SERDEPROPERTIES (
  "input.regex" = "([0-9]*)\\|\\|([^}]*)\\|\\|([^}]*)\\|\\|([^}]*)\\|\\|([^}]*)\\|\\|([^}]*)"
);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

➢ 加载数据
load data local inpath ‘/export/data/test01.txt’ into table singer;

➢ 查看数据结果
select * from singer;
在这里插入图片描述
每一列的数据都被正常的加载,没有错位

4.6 RegexSerDe解决数据中包含分割符

➢ 分析数据格式,构建正则表达式
➢ 原始数据格式
192.168.88.100 [08/Nov/2020:10:44:33 +0800] “GET /hpsk_sdk/index.html HTTP/1.1” 200 328

➢ 正则表达式定义每一列
([^ ]) ([^}]) ([^ ]) ([^ ]) ([^ ]) ([0-9]) ([^ ]*)

➢ 正则校验
在这里插入图片描述
➢ 基于正则表达式,使用RegexSerde建表
–如果表存在,就删除表
drop table if exists apachelog;
–创建表
create table apachelog(
ip string, --IP地址
stime string, --时间
mothed string, --请求方式
url string, --请求地址
policy string, --请求协议
stat string, --请求状态
body string --字节大小
)
–指定使用RegexSerde加载数据
ROW FORMAT SERDE ‘org.apache.hadoop.hive.serde2.RegexSerDe’
–指定正则表达式
WITH SERDEPROPERTIES (
“input.regex” = “([^ ]) ([^}]) ([^ ]) ([^ ]) ([^ ]) ([0-9]) ([^ ]*)”
);

➢ 加载数据
load data local inpath ‘/export/data/apache_web_access.log’ into table apachelog;
➢ 查看数据结果
select ip,stime,url,stat,body from apachelog;
在这里插入图片描述

4.7 总结

RegexSerde使用简单,对于各种复杂的数据场景,都可以通过正则定义匹配每行中的每个字段,基本上可以满足大多数场景的需求,工作中推荐使用该方式来实现对于复杂数据的加载。
  • 1

5 解决方案三:自定义InputFormat

5.1 方案概述

Hive中也允许使用自定义InputFormat来解决以上问题,通过在自定义InputFormat,来自定义解析逻辑实现读取每一行的数据。

5.2 自定义InputFormat

➢ 自定义InputFormat继承自TextInputFormat,读取数据时将每条数据中的”||”全部替换成“|”
➢ 自定义InputFormat

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.*;

import java.io.IOException;

/**
 * @ClassName UserInputFormat
 * @Description TODO 用于实现自定义InputFormat,读取每行数据
 * @Create By     Itcast
 */

public class UserInputFormat extends TextInputFormat {
    @Override
    public RecordReader<LongWritable, Text> getRecordReader(InputSplit genericSplit, JobConf job,
                                                            Reporter reporter) throws IOException {
        reporter.setStatus(genericSplit.toString());
        UserRecordReader reader = new UserRecordReader(job,(FileSplit)genericSplit);
        return reader;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

➢ 自定义RecordReader

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.Seekable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.*;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.LineRecordReader;
import org.apache.hadoop.mapred.RecordReader;

import java.io.IOException;
import java.io.InputStream;

/**
 * @ClassName UserRecordReader
 * @Description TODO 用于自定义读取器,在自定义InputFormat中使用,将读取到的每行数据中的||替换为|
 * @Create By     Itcast
 */


public class UserRecordReader implements RecordReader<LongWritable, Text> {
    private static final Log LOG = LogFactory.getLog(LineRecordReader.class.getName());
    int maxLineLength;
    private CompressionCodecFactory compressionCodecs = null;
    private long start;
    private long pos;
    private long end;
    private LineReader in;
    private Seekable filePosition;
    private CompressionCodec codec;
    private Decompressor decompressor;

    public UserRecordReader(Configuration job, FileSplit split) throws IOException {
        this.maxLineLength = job.getInt("mapred.linerecordreader.maxlength", Integer.MAX_VALUE);
        start = split.getStart();
        end = start + split.getLength();
        final Path file = split.getPath();
        compressionCodecs = new CompressionCodecFactory(job);
        codec = compressionCodecs.getCodec(file);
        FileSystem fs = file.getFileSystem(job);
        FSDataInputStream fileIn = fs.open(split.getPath());
        if (isCompressedInput()) {
            decompressor = CodecPool.getDecompressor(codec);
            if (codec instanceof SplittableCompressionCodec) {
                final SplitCompressionInputStream cIn = ((SplittableCompressionCodec) codec)
                        .createInputStream(fileIn, decompressor, start, end,
                                SplittableCompressionCodec.READ_MODE.BYBLOCK);
                in = new LineReader(cIn, job);
                start = cIn.getAdjustedStart();
                end = cIn.getAdjustedEnd();
                filePosition = cIn; // take pos from compressed stream
            } else {
                in = new LineReader(codec.createInputStream(fileIn, decompressor), job);
                filePosition = fileIn;
            }
        } else {
            fileIn.seek(start);
            in = new LineReader(fileIn, job);
            filePosition = fileIn;
        }
        if (start != 0) {
            start += in.readLine(new Text(), 0, maxBytesToConsume(start));
        }
        this.pos = start;
    }

    private boolean isCompressedInput() {
        return (codec != null);
    }

    private int maxBytesToConsume(long pos) {
        return isCompressedInput() ? Integer.MAX_VALUE : (int) Math.min(Integer.MAX_VALUE, end - pos);
    }

    private long getFilePosition() throws IOException {
        long retVal;
        if (isCompressedInput() && null != filePosition) {
            retVal = filePosition.getPos();
        } else {
            retVal = pos;
        }
        return retVal;
    }

    public LongWritable createKey() {
        return new LongWritable();
    }

    public Text createValue() {
        return new Text();
    }

    /**
     * Read a line.
     */
    public synchronized boolean next(LongWritable key, Text value) throws IOException {
        while (getFilePosition() <= end) {
            key.set(pos);
            int newSize = in.readLine(value, maxLineLength, Math.max(maxBytesToConsume(pos), maxLineLength));
            String str = value.toString().replaceAll("\\|\\|", "\\|");
            value.set(str);
            pos += newSize;
            if (newSize == 0) {
                return false;
            }
            if (newSize < maxLineLength) {
                return true;
            }
            LOG.info("Skipped line of size " + newSize + " at pos " + (pos - newSize));
        }
        return false;
    }

    public float getProgress() throws IOException {
        if (start == end) {
            return 0.0f;
        } else {
            return Math.min(1.0f, (getFilePosition() - start) / (float) (end - start));
        }
    }

    public synchronized long getPos() throws IOException {
        return pos;
    }

    public synchronized void close() throws IOException {
        try {
            if (in != null) {
                in.close();
            }
        } finally {
            if (decompressor != null) {
                CodecPool.returnDecompressor(decompressor);
            }
        }
    }

    public static class LineReader extends org.apache.hadoop.util.LineReader {
        LineReader(InputStream in) {
            super(in);
        }

        LineReader(InputStream in, int bufferSize) {
            super(in, bufferSize);
        }

        public LineReader(InputStream in, Configuration conf) throws IOException {
            super(in, conf);
        }
    }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156

5.3 基于自定义Input创建表

➢ 将开发好的InputFormat打成jar包,放入Hive的lib目录中
在这里插入图片描述
➢ 在Hive中,将jar包添加到环境变量中
add jar /export/server/hive-3.1.2-bin/lib/HiveUserInputFormat.jar;
该方法可以实现临时添加,如果希望永久生效,重启Hive即可
➢ 创建表,指定自定义的InputFormat读取数据

--如果表已存在就删除表
drop table if exists singer;
--创建表
create table singer(
 id string,--歌手id
 name string,--歌手名称
 country string,--国家
 province string,--省份
 gender string,--性别
 works string--作品
)
--指定使用分隔符为|
row format delimited fields terminated by '|'
stored as 
--指定使用自定义的类实现解析
inputformat 'bigdata.itcast.cn.hive.mr.UserInputFormat' 
outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

➢ 加载数据
load data local inpath ‘/export/data/test01.txt’ into table singer;

5.4 查看结果

select * from singer;
在这里插入图片描述
数据正常匹配,没有出现错位。

6 总结

当数据文件中出现多字节分隔符或者数据中包含了分隔符时,会导致数据加载与实际表的字段不匹配的问题,基于这个问题我们提供了三种方案:替换分隔符、正则加载及自定义InputFormat来实现,其中替换分隔符无法解决数据中存在分隔符的问题,自定义InputFormat的开发成本较高,所以整体推荐使用正则加载的方式来实现对于特殊数据的处理。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/589977
推荐阅读
相关标签
  

闽ICP备14008679号