当前位置:   article > 正文

用Inception-V3模型进行图像分类_inceptionv3

inceptionv3

Inception-V3模型简介



本例使用预训练好的深度神经网络Inception-v3模型来进行图像分类。Inception-v3模型在一台配有 8 Tesla K40 GPUs,大概价值$30,000的野兽级计算机上训练了几个星期,因此不可能在一台普通的PC上训练。我们将会下载预训练好的Inception模型,然后用它来做图像分类。


Inception-v3模型大约有2500万个参数,分类一张图像就用了50亿的乘加指令。在一台没有GPU的现代PC上,分类一张图像转眼就能完成。



ImageNet数据集简介



ImageNet数据集包含1500万张图片,22000个类别。其子集对应的是目前最权威的图片分类竞赛LSVRC,包含100万张图片和1000个类别。


谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型可以直接用来进行图像分类


输入:一张图片;


输出:与输入图相匹配的库内图片名及匹配分数。




工程文件



工程文件如下:




1.  文件:就是训练好的Inception-v3模型;


2.  文件:为类别文件,共包含2万多种类别,内容如下:




3.  :为进行分类的代码;


4.  :为分类的输入图;


5.  :为镜像文件;


6. 





运行



1. 点击“开始”——选择“Anaconda Prompt”,如下所示;



2. 由于工程文件存放在E盘下,首先,需要修改目录路径,进入E盘;然后,再使用cd 进入各目录,如下所示:




3. 最后,使用python 文件名,运行即可,如下图所示:





结果


1. 输入为猫时,例图如下:



运行,获得库内分数最高的前5个(即获得输入图的类别),结果如下:





修改目标图为熊猫




1. 如果将目标图改为熊猫,例图为:



打开Classify.py文件,代码做如下修改:



运行结果如下:




2. 在 文件内,查找panda,即可找到所有panda:





修改目标图为鹦鹉




1. 如果将目标图修改为鹦鹉,例图为:




代码修改为:



2. 在Anaconda Prompt内输入python Classify.py,运行结果如下:




3. 由于Inception模型适用于299 * 299像素的输入图像。例子中的鹦鹉图像为320 * 785像素的图像,因此它将由Inception模型自动缩放。


4. 手动裁剪鹦鹉图像为299 * 299像素大小,然后输入到Inception模型中,例图如下:



代码修改为:



运行结果如下:



5. 修改鹦鹉图,只保留尾部,例图如下:



代码修改为:



运行结果为:










声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/690906
推荐阅读
相关标签
  

闽ICP备14008679号