赞
踩
Greedy Randomized Adaptive Search,贪婪随机自适应搜索(GRAS),是组合优化问题中的多起点元启发式算法,在算法的每次迭代中,主要由两个阶段组成:构造(construction)和局部搜索( local search)。 构造(construction)阶段主要用于生成一个可行解,而后该初始可行解会被放进局部搜索进行邻域搜索,直到找到一个局部最优解为止。
如上面所说,其实整一个算法的框架相对于其他算法来说还算比较简单明了,大家可以先看以下整体的伪代码:
GRAS主要由两部分组成:
然后再多说两句:
Repair是什么鬼?
有时候由于随机因素的加入,Greedy_Randomized_Construction阶段生成的解不一定都是可行解,所以为了保证下一步的Local Search能继续进行,加入repair算子,对解进行修复,保证其可行。
不是说自适应(Adaptive)吗?我怎么没看到Adaptive 的过程?
别急,这个后面具体举例的时候会详细讲到。
为了大家能更加深入理解该算法,我们举一个简单的例子来为大家详细讲解算法的流程。
好了,相信大家都看懂上面的问题了(看不懂也别问我,摊手)。对于上述问题,我们来一步一个脚印用GRAS来求解之,来,跟紧小编的脚步……
强调了很多次,GRAS由两部分组成:Greedy_Randomized_Construction和Local Search,所以,在求解具体问题的时候,完成这两部分的设计,然后按照第二节所示的框架搭起来就可以。
这里还是老规矩,先上伪代码给大家看看,然后我们再进行讲解,毕竟对于算法来说,伪代码的作用不言而喻。
相信经过上面如此详细的介绍,大家都懂了吧!
关于Local Search方面的内容,相信大家学习heuristic这么久了,就不用我多说什么了吧:
简单看一下伪代码即可,主要是邻域算子的设计,然后就是在邻域里面进行搜索,找到一个局部最优解为止。然后关于邻域搜索,有best-improving or first-improving strategy 两种策略,这个下次有时间出个专题给大家讲明白一些相关概念吧。
前面我们说了,Greedy_Randomized_Construction用于生成初始解,既然是Greedy_Randomized两个结合体,那么肯定就有一个权重分配的问题,即,是Greedy成分多一点呢?还是Randomized成分多一点好呢?因此,为了控制这两个小老弟的权重,防止某个家伙在该过程中用力过猛导致解不那么好的情况,我们引入一个参数α:
其他部分就不再多说,可以看到,上面的α参数主要是控制RCL的长度:
由于小编精力有限,就不从头写一遍了,从GitHub上找了一个感觉还不错的算法给大家,也是求解TSP问题的。不过说实在的,python写算法的速度是很慢的,无论是速度还是算法架构等方面都不推荐大家用matlab或者python写大型优化算法。
运行结果如下:
代码算例以及相关运行结果请关注公众号【程序猿声】,后台回复:GRAS,即可下载
############################################################################ # Created by: Prof. Valdecy Pereira, D.Sc. # UFF - Universidade Federal Fluminense (Brazil) # email: valdecy.pereira@gmail.com # Course: Metaheuristics # Lesson: Local Search-GRASP # Citation: # PEREIRA, V. (2018). Project: Metaheuristic-Local_Search-GRASP, File: Python-MH-Local Search-GRASP.py, GitHub repository: <https://github.com/Valdecy/Metaheuristic-Local_Search-GRASP> ############################################################################ # Required Libraries import pandas as pd import random import numpy as np import copy import os from matplotlib import pyplot as plt # Function: Tour Distance def distance_calc(Xdata, city_tour): distance = 0 for k in range(0, len(city_tour[0])-1): m = k + 1 distance = distance + Xdata.iloc[city_tour[0][k]-1, city_tour[0][m]-1] return distance # Function: Euclidean Distance def euclidean_distance(x, y): distance = 0 for j in range(0, len(x)): distance = (x.iloc[j] - y.iloc[j])**2 + distance return distance**(1/2) # Function: Initial Seed def seed_function(Xdata): seed = [[],float("inf")] sequence = random.sample(list(range(1,Xdata.shape[0]+1)), Xdata.shape[0]) sequence.append(sequence[0]) seed[0] = sequence seed[1] = distance_calc(Xdata, seed) return seed # Function: Build Distance Matrix def buid_distance_matrix(coordinates): Xdata = pd.DataFrame(np.zeros((coordinates.shape[0], coordinates.shape[0]))) for i in range(
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。