当前位置:   article > 正文

SQL语言--语句优化总结_sql select * from (select ) u

sql select * from (select ) u

概要

性能不理想的系统中除了一部分是因为应用程序的负载确实超过了服务器的实际处理能力外,更多的是因为系统存在大量的SQL语句需要优化。

为了获得稳定的执行性能,SQL语句越简单越好。对复杂的SQL语句,要设法对之进行简化。

常见的简化规则如下:

     不要有超过5个以上的表连接(JOIN)
     考虑使用临时表或表变量存放中间结果。
     少用子查询
     视图嵌套不要过深,一般视图嵌套不要超过2个为宜。

为了加快查询速度,优化查询效率,主要原则就是应尽量避免全表扫描,应该考虑在where及order by 涉及的列上建立索引。

建立索引不是建的越多越好,原则是:

利用以上的基础我们讨论一下如何优化sql:

    表的索引不是越多越好,也没有一个具体的数字,根据以往的经验,一个表的索引最多不能超过6个,因为索引越多,对update和insert操作也会有性能的影响,涉及到索引的新建和重建操作。
    建立索引的方法论为:

语句优化
1、sql语句模型结构优化指导

a. ORDER BY + LIMIT组合的索引优化

如果一个SQL语句形如:

SELECT [column1],[column2],…. FROM [TABLE] ORDER BY [sort] LIMIT [offset],[LIMIT];

这个SQL语句优化比较简单,在[sort]这个栏位上建立索引即可。

b. WHERE + ORDER BY + LIMIT组合的索引优化

如果一个SQL语句形如:

SELECT [column1],[column2],…. FROM [TABLE] WHERE [columnX] = [VALUE] ORDER BY [sort] LIMIT [offset],[LIMIT];

这个语句,如果你仍然采用第一个例子中建立索引的方法,虽然可以用到索引,但是效率不高。更高效的方法是建立一个联合索引(columnX,sort)

c. WHERE+ORDER BY多个栏位+LIMIT

如果一个SQL语句形如:

SELECT * FROM [table] WHERE uid=1 ORDER x,y LIMIT 0,10;

对于这个语句,大家可能是加一个这样的索引:(x,y,uid)。但实际上更好的效果是(uid,x,y)。这是由MySQL处理排序的机制造成的。
2、复合索引(形如(x,y,uid)索引的索引)

先看这样一条语句这样的:select* from users where area =’beijing’ and age=22;

如果我们是在area和age上分别创建索引的话,由于mysql查询每次只能使用一个索引,所以虽然这样已经相对不做索引时全表扫描提高了很多效率,但是如果area,age两列上创建复合索引的话将带来更高的效率。

在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

例如我们建立了一个这样的索引(area,age,salary),那么其实相当于创建了(area,age,salary),(area,age),(area)三个索引,这样称为最佳左前缀特性。
3、like语句优化

SELECT id FROM A WHERE name like '%abc%'

由于abc前面用了“%”,因此该查询必然走全表查询,除非必要,否则不要在关键词前加%,优化成如下

SELECT id FROM A WHERE name like 'abc%'

4、where子句使用 != 或 <> 操作符优化

在where子句中使用 != 或 <>操作符,索引将被放弃使用,会进行全表查询。

    如SQL:SELECT id FROM A WHERE ID != 5
     
    优化成:SELECT id FROM A WHERE ID>5 OR ID<5

5、where子句中使用 IS NULL 或 IS NOT NULL 的优化

在where子句中使用 IS NULL 或 IS NOT NULL 判断,索引将被放弃使用,会进行全表查询。

    如SQL:SELECT id FROM A WHERE num IS NULL
     
    优化成num上设置默认值0,确保表中num没有null值,然后SQL为:SELECT id FROM A WHERE num=0

6、where子句使用or的优化

很多时候使用union all 或 nuin(必要的时候)的方式替换“or”会得到更好的效果。where子句中使用了or,索引将被放弃使用。

    如SQL:SELECT id FROM A WHERE num =10 or num = 20
     
    优化成:SELECT id FROM A WHERE num = 10 union all SELECT id FROM A WHERE num=20

7、where子句使用IN 或 NOT IN的优化

in和not in 也要慎用,否则也会导致全表扫描。

方案一:between替换in

    如SQL:SELECT id FROM A WHERE num in(1,2,3)
     
    优化成:SELECT id FROM A WHERE num between 1 and 3

方案二:exist替换in

    如SQL:SELECT id FROM A WHERE num in(select num from b )
     
    优化成:SELECT num FROM A WHERE num exists(select 1 from B where B.num = A.num)

方案三:left join替换in

    如SQL:SELECT id FROM A WHERE num in(select num from B)
     
    优化成:SELECT id FROM A LEFT JOIN B ON A.num = B.num

8、where子句中对字段进行表达式操作的优化

不要在where子句中的“=”左边进行函数、算数运算或其他表达式运算,否则系统将可能无法正确使用索引。

    如SQL:SELECT id FROM A WHERE num/2 = 100
    优化成:SELECT id FROM A WHERE num = 100*2
     
    如SQL:SELECT id FROM A WHERE substring(name,1,3) = 'abc'
    优化成:SELECT id FROM A WHERE LIKE 'abc%'
     
    如SQL:SELECT id FROM A WHERE datediff(day,createdate,'2016-11-30')=0
    优化成:SELECT id FROM A WHERE createdate>='2016-11-30' and createdate<'2016-12-1'
     
    如SQL:SELECT id FROM A WHERE year(addate) <2016
    优化成:SELECT id FROM A where addate<'2016-01-01'

9、任何地方都不要用 select * from table ,用具体的字段列表替换"*",不要返回用不到的字段
10、使用“临时表”暂存中间结果

采用临时表暂存中间结果好处:

(1)避免程序中多次扫描主表,减少程序执行“共享锁”阻塞“更新锁”,减少了阻塞,提高了并发性能。

(2)尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

(3)避免频繁创建和删除临时表,以减少系统资源的浪费。

(4)尽量避免向客户端返回大数据量,若数据量过大,应考虑相应需求是否合理。
11、limit分页优化

当偏移量特别时,limit效率会非常低

    SELECT id FROM A LIMIT 1000,10   很快
     
    SELECT id FROM A LIMIT 90000,10 很慢

优化方法:

    方法一:select id from A order by id limit 90000,10; 很快,0.04秒就OK。 因为用了id主键做索引当然快
     
    方法二:select id,title from A where id>=(select id from collect order by id limit 90000,1) limit 10;
     
    方法三:select id from A order by id  between 10000000 and 10000010;

12、批量插入优化

    INSERT into person(name,age) values('A',14)
    INSERT into person(name,age) values('B',14)
    INSERT into person(name,age) values('C',14)

可优化为:

INSERT into person(name,age) values('A',14),('B',14),('C',14)

13、利用limit 1 、top 1 取得一行

有时要查询一张表时,你知道只需要看一条记录,你可能去查询一条特殊的记录。可以使用limit 1 或者 top 1 来终止数据库索引继续扫描整个表或索引。

    如SQL:SELECT id FROM A LIKE 'abc%'
     
    优化为:SELECT id FROM A LIKE 'abc%' limit 1

14、尽量不要使用 BY RAND()命令

BY RAND()是随机显示结果,这个函数可能会为表中每一个独立的行执行BY RAND()命令,这个会消耗处理器的处理能力。

    如SQL:SELECT * FROM A order by rand() limit 10
     
    优化为:SELECT * FROM A WHERE id >= ((SELECT MAX(id) FROM A)-(SELECT MIN(id) FROM A)) * RAND() + (SELECT MIN(id) FROM A) LIMIT 10

15、排序的索引问题

Mysql查询只是用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求情况下不要使用排序操作;

尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。
16、尽量用 union all 替换 union

union和union all的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会涉及到排序,增加大量的cpu运算,加大资源消耗及延迟。所以当我们可以确认不可能出现重复结果集或者不在乎重复结果集的时候,尽量使用union all而不是union
17、避免类型转换

这里所说的“类型转换”是指where子句中出现column字段的类型和传入的参数类型不一致的时候发生的类型转换。人为的上通过转换函数进行转换,直接导致mysql无法使用索引。如果非要转型,应该在传入参数上进行转换。

例如utime 是datetime类型,传入的参数是“2016-07-23”,在比较大小时通常是 date(utime)>"2016-07-23",可以优化为utime>"2016-07-23 00:00:00"
18、尽可能使用更小的字段

MySQL从磁盘读取数据后是存储到内存中的,然后使用cpu周期和磁盘I/O读取它,这意味着越小的数据类型占用的空间越小,从磁盘读或打包到内存的效率都更好,但也不要太过执着减小数据类型,要是以后应用程序发生什么变化就没有空间了。

修改表将需要重构,间接地可能引起代码的改变,这是很头疼的问题,因此需要找到一个平衡点。
19、Inner join 和 left join、right join、子查询

第一:inner join内连接也叫等值连接是,left/rightjoin是外连接。

    SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id;
     
    SELECT A.id,A.name,B.id,B.name FROM A RIGHT JOIN ON B A.id= B.id;
     
    SELECT A.id,A.name,B.id,B.name FROM A INNER JOIN ON A.id =B.id;

经过来之多方面的证实inner join性能比较快,因为inner join是等值连接,或许返回的行数比较少。但是我们要记得有些语句隐形的用到了等值连接,如:

SELECT A.id,A.name,B.id,B.name FROM A,B WHERE A.id = B.id;

推荐:能用inner join连接尽量使用inner join连接

第二:子查询的性能又比外连接性能慢,尽量用外连接来替换子查询。

Select* from A where exists (select * from B where id>=3000 and A.uuid=B.uuid);

A表的数据为十万级表,B表为百万级表,在本机执行差不多用2秒左右,我们可以通过explain可以查看到子查询是一个相关子查询(DEPENDENCE SUBQUERY);Mysql是先对外表A执行全表查询,然后根据uuid逐次执行子查询,如果外层表是一个很大的表,我们可以想象查询性能会表现比这个更加糟糕。

一种简单的优化就是用innerjoin的方法来代替子查询,查询语句改为:

Select* from A inner join B ON A.uuid=B.uuid using(uuid) where b.uuid>=3000;  这个语句执行测试不到一秒;

第三:使用JOIN时候,应该用小的结果驱动打的结果

(left join 左边表结果尽量小,如果有条件应该放到左边先处理,right join同理反向),同时尽量把牵涉到多表联合的查询拆分多个query (多个表查询效率低,容易锁表和阻塞)。如:

Select * from A left join B A.id=B.ref_id where  A.id>10;可以优化为:select * from (select * from A wehre id >10) T1 left join B on T1.id=B.ref_id;

20、exist 代替 in

    SELECT * from A WHERE idin (SELECT id from B)
     
    SELECT * from A WHERE id EXISTS(SELECT 1 from A.id= B.id)

in 是在内存中遍历比较

exist 需要查询数据库,所以当B的数据量比较大时,exists效率优于in.

in()只执行一次,把B表中的所有id字段缓存起来,之后检查A表的id是否与B表中的id相等,如果id相等则将A表的记录加入到结果集中,直到遍历完A表的所有记录。

in()适合B表比A表数据小的情况,exists()适合B表比A表数据大的情况。
查询速度慢的原因:

  1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
 
  2、I/O吞吐量小,形成了瓶颈效应。  

  3、没有创建计算列导致查询不优化。
 
  4、内存不足  

  5、网络速度慢  

  6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)  

  7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)  

  8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
 
  9、返回了不必要的行和列  

  10、查询语句不好,没有优化
优化方面

主要在下述限制结果集,合理的表设计,OLAP和OLTP模块分开,使用存储过程四个方面进行优化
1.限制结果集

要尽量减少返回的结果行,包括行数和字段列数。

返回的结果越大,意味着相应的SQL语句的logical reads 就越大,对服务器的性能影响就越大。

一个很不好的设计就是返回表的所有数据: Select * from tablename

即使表很小也会导致并发问题。更坏的情况是,如果表有上百万行的话,那后果将是灾难性的。它不但可能带来极重的磁盘IO,更有可能把数据库缓冲区中的其他缓存数据挤出,使得这些数据下次必须再从磁盘读取。

必须设计良好的SQL语句,使得其有where语句或TOP语句来限制结果集大小。
2.合理的表设计

SQL Server 2005将支持表分区技术。利用表分区技术可以实现数据表的流动窗口功能。在流动窗口中可以轻易的把历史数据移出,把新的数据加入,从而使表的大小基本保持稳定。

另外,表的设计未必需要非常范式化。有一定的字段冗余可以增加SQL语句的效率,减少JOIN的数目,提高语句的执行速度。
3.OLAP和OLTP模块要分开

OLAP和OLTP类型的语句是截然不同的。

OLAP往往需要扫描整个表做统计分析,索引对这样的语句几乎没有多少用处。索引只能够加快那些如sum,group by之类的聚合运算。因为这个原因,几乎很难对OLAP类型的SQL语句进行优化。

OLTP语句则只需要访问表的很小一部分数据,而且这些数据往往可以从内存缓存中得到。

为了避免OLAP 和OLTP语句相互影响,这两类模块需要分开运行在不同服务器上。因为OLAP语句几乎都是读取数据,没有更新和写入操作,所以一个好的经验是配置一台standby 服务器,然后OLAP只访问standby服务器。
4.使用存储过程

可以考虑使用存储过程封装那些复杂的SQL语句或商业逻辑,这样做有几个好处:

    存储过程的执行计划可以被缓存在内存中较长时间,减少了重新编译的时间。
    存储过程减少了客户端和服务器的繁复交互。
    如果程序发布后需要做某些改变你可以直接修改存储过程而不用修改程序,避免需要重新安装部署程序。

总结:

如何使一个性能缓慢的系统运行更快更高效,不但需要整体分析数据库系统,找出系统的性能瓶颈,更需要优化数据库系统发出的SQL 语句。

一旦找出关键的SQL 语句并加与优化,性能问题就会迎刃而解。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/764012
推荐阅读
相关标签
  

闽ICP备14008679号