赞
踩
以下内容均整理来自deeplearning.ai的同名课程
Location 课程访问地址
LangChain是一个框架,用于开发由大语言模型驱动的应用程序。开发者相信,最强大的、差异化的应用不仅会调用语言模型,而且还会具备以下原则:
数据感知:将语言模型与其他数据源连接起来。
代理性:允许语言模型与环境互动
LangChain支持python和javascript两种语言。专注于组合和模块化。
官方文档:https://python.langchain.com/en/latest/
中文文档:https://www.langchain.com.cn/
包括大量的整合对话模型、聊天模型;提示词模板,输出分析器,示例选择器。
支持检索和调用其他数据源,包括不限于文本、数组,支持多个数据检索工具。
支持搭建对话链模板,按输入信息,自动生成标准化加工后的输出结果。
可调用多个预设或者自定义的算法和小工具。
通常来说,我们通过以下方式调用gpt
- def get_completion(prompt, model="gpt-3.5-turbo"):
- messages = [{"role": "user", "content": prompt}]
- response = openai.ChatCompletion.create(
- model=model,
- messages=messages,
- temperature=0,
- )
- return response.choices[0].message["content"]
- # 创建一个调用函数
-
- prompt = f"""Translate the text \
- that is delimited by triple backticks
- into a style that is {style}.
- text: ```{customer_email}```
- """
- # 编写提示语
-
- response = get_completion(prompt)
- #调用生成结果
现在看下langchain怎么基于模型进行调用
- from langchain.chat_models import ChatOpenAI
- chat = ChatOpenAI(temperature=0.0)
- # 加载langchain对话模型,并设置对话随机性为0
-
- template_string = """Translate the text \
- that is delimited by triple backticks \
- into a style that is {style}. \
- text: ```{text}```
- """
- # 设计模板信息
-
- from langchain.prompts import ChatPromptTemplate
- prompt_template = ChatPromptTemplate.from_template(template_string)
- # 加载提示语模板,载入模板信息
-
- customer_style = """American English \
- in a calm and respectful tone
- """
- customer_email = """
- Arrr, I be fuming that me blender lid \
- flew off and splattered me kitchen walls \
- with smoothie! And to make matters worse, \
- the warranty don't cover the cost of \
- cleaning up me kitchen. I need yer help \
- right now, matey!
- """
- # 定义模板中可变字段的变量信息
-
- customer_messages = prompt_template.format_messages(
- style=customer_style,
- text=customer_email)
- # 调用模板,对模板中的变量进行赋值,并生成最终提示语
-
- customer_response = chat(customer_messages)
- # 调用提示语,生成对话结果
-
通过“创建包含变量信息的提示词模板”,可以按照需求场景,灵活的通过改变变量信息,生成新的提示词。实现了模板的复用。
将大语言模型生成的结果,转换为特定结构的输出,如字典,数组等
- from langchain.output_parsers import ResponseSchema
- from langchain.output_parsers import StructuredOutputParser
- # 加载输出解析器
-
- gift_schema = ResponseSchema(name="gift",
- description="Was the item purchased\
- as a gift for someone else? \
- Answer True if yes,\
- False if not or unknown.")
- delivery_days_schema = ResponseSchema(name="delivery_days",
- description="How many days\
- did it take for the product\
- to arrive? If this \
- information is not found,\
- output -1.")
- price_value_schema = ResponseSchema(name="price_value",
- description="Extract any\
- sentences about the value or \
- price, and output them as a \
- comma separated Python list.")
-
- response_schemas = [gift_schema,
- delivery_days_schema,
- price_value_schema]
- # 创建一组解析规则
-
- output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
- format_instructions = output_parser.get_format_instructions()
- #编译解析规则
-
- review_template_2 = """\
- For the following text, extract the following information:
- gift: Was the item purchased as a gift for someone else? \
- Answer True if yes, False if not or unknown.
- delivery_days: How many days did it take for the product\
- to arrive? If this information is not found, output -1.
- price_value: Extract any sentences about the value or price,\
- and output them as a comma separated Python list.
- text: {text}
- {format_instructions}
- """
- # 创建一个提示词模板,将编译好的解析规则添加到模板中
-
- prompt = ChatPromptTemplate.from_template(template=review_template_2)
- messages = prompt.format_messages(text=customer_review,
- format_instructions=format_instructions)
- # 通过模板生成提示词信息
-
- response = chat(messages)
- # 生成结果
- output_dict = output_parser.parse(response.content)
- # 将生成结果存入字典中
大语言模型在通过接口调用过程中,并不会自动记忆历史问答/上下文(来进行回答)。而通过调用memory组件。langchain提供了多种记忆历史问答/上下文的方式。
- from langchain.chat_models import ChatOpenAI
- from langchain.chains import ConversationChain
- from langchain.memory import ConversationBufferMemory
- # 加载所需包
-
- llm = ChatOpenAI(temperature=0.0)
- memory = ConversationBufferMemory()
- conversation = ConversationChain(
- llm=llm,
- memory = memory,
- verbose=True
- )
- # 船创建一个对话,创建一个上下文储存区,创建一个链式沟通会话。
-
- conversation.predict(input="Hi, my name is Andrew")
- conversation.predict(input="What is 1+1?")
- conversation.predict(input="What is my name?")
- #在会话中添加会话内容,程序会自动将提问和回答一起保存到上下文储存区
-
- print(memory.buffer)
- memory.load_memory_variables({})
- #显示上下文储存区内保存的会话内容
-
- memory.save_context({"input": "Hi"},
- {"output": "What's up"})
- #直接对上下文储存区内的会话内容进行赋值(赋值内容为问答对)
- from langchain.memory import ConversationBufferWindowMemory
- # 加载组件
-
- memory = ConversationBufferWindowMemory(k=1)
- # 添加一个只有1空间的记忆内存
-
- memory.save_context({"input": "Hi"},
- {"output": "What's up"})
- memory.save_context({"input": "Not much, just hanging"},
- {"output": "Cool"})
- # 此时,上下文储存区里面,只有第二个对话的记忆,即在1空间情况下,程序只会记忆最新的1空间的问答记忆。
- from langchain.memory import ConversationTokenBufferMemory
- from langchain.llms import OpenAI
- llm = ChatOpenAI(temperature=0.0)
- # 加载组件
-
- memory = ConversationTokenBufferMemory(llm=llm, max_token_limit=30)
- # 创建一个只有30词汇大小的记忆空间(因为有限空间的判断也会用到大预言模型,所以需要加载llm)
-
- memory.save_context({"input": "AI is what?!"},
- {"output": "Amazing!"})
- memory.save_context({"input": "Backpropagation is what?"},
- {"output": "Beautiful!"})
- memory.save_context({"input": "Chatbots are what?"},
- {"output": "Charming!"})
- # 在这种情况下,程序只会保存不大于30个词汇的最新的问答,此时并不会强行保证问答都存在,仅包含答案也行。
-
- memory.load_memory_variables({})
- # 显示结果:{'history': 'AI: Beautiful!\nHuman: Chatbots are what?\nAI: Charming!'}
- from langchain.memory import ConversationSummaryBufferMemory
- # 加载包
-
- schedule = "There is a meeting at 8am with your product team. \
- You will need your powerpoint presentation prepared. \
- 9am-12pm have time to work on your LangChain \
- project which will go quickly because Langchain is such a powerful tool. \
- At Noon, lunch at the italian resturant with a customer who is driving \
- from over an hour away to meet you to understand the latest in AI. \
- Be sure to bring your laptop to show the latest LLM demo."
- # 一个长内容
-
- memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=100)
- # 创建一个最大词汇量为100的上下文总结式记忆空间(需要大预言模型进行总结,所以加载模型)
-
- memory.save_context({"input": "Hello"}, {"output": "What's up"})
- memory.save_context({"input": "Not much, just hanging"},
- {"output": "Cool"})
- memory.save_context({"input": "What is on the schedule today?"},
- {"output": f"{schedule}"})
- # 添加对话
-
- memory.load_memory_variables({})
- # 显示结果为总结后的内容,通过总结将记忆内容缩短到100个词汇以内:{'history': "System: The human and AI engage in small talk before discussing the day's schedule. The AI informs the human of a morning meeting with the product team, time to work on the LangChain project, and a lunch meeting with a customer interested in the latest AI developments."}
-
- conversation = ConversationChain(
- llm=llm,
- memory = memory,
- verbose=True
- )
- conversation.predict(input="What would be a good demo to show?")
- # 特别的,在对话中调用总结式记忆空间。会自动保存最新一段AI答的原文(不总结归纳)
- # 并把其他对话内容进行总结。这样做可能是为了更好的获取回答,最后一段AI答价值很大,不宜信息缩减。
- from langchain.chat_models import ChatOpenAI
- from langchain.prompts import ChatPromptTemplate
- from langchain.chains import LLMChain
- llm = ChatOpenAI(temperature=0.9)
- # 加载包
-
- prompt = ChatPromptTemplate.from_template(
- "What is the best name to describe \
- a company that makes {product}?"
- )
- # 创建一个待变量product的提示词
-
- chain = LLMChain(llm=llm, prompt=prompt)
- # 创建一个基础对话链
-
- product = "Queen Size Sheet Set"
- chain.run(product)
- # 提示词变量赋值,并获得回答
一般序列链可以将前一个链的输出结果,作为后一个链的输入。一般序列链有唯一输入和输出变量。
- from langchain.chains import SimpleSequentialChain
- llm = ChatOpenAI(temperature=0.9)
- # 加载包
-
- first_prompt = ChatPromptTemplate.from_template(
- "What is the best name to describe \
- a company that makes {product}?"
- )
- # 提示词模板1,变量为product
-
- chain_one = LLMChain(llm=llm, prompt=first_prompt)
- # 链1
-
- second_prompt = ChatPromptTemplate.from_template(
- "Write a 20 words description for the following \
- company:{company_name}"
- )
- # 提示词模板2,变量为company_name
-
- chain_two = LLMChain(llm=llm, prompt=second_prompt)
- # 链2
-
- overall_simple_chain = SimpleSequentialChain(chains=[chain_one, chain_two],
- verbose=True)
- overall_simple_chain.run(product)
- # 组合链1、链2,获取结果
序列链中包含多个链,其中一些链的结果可以作为另一个链的输入。序列链可以支持多个输入和输出变量。
- from langchain.chains import SequentialChain
- llm = ChatOpenAI(temperature=0.9)
- # 加载
-
- first_prompt = ChatPromptTemplate.from_template(
- "Translate the following review to english:"
- "\n\n{Review}"
- chain_one = LLMChain(llm=llm, prompt=first_prompt,
- output_key="English_Review"
- )
- # 链1:输入Review,输出English_Review
-
- second_prompt = ChatPromptTemplate.from_template(
- "Can you summarize the following review in 1 sentence:"
- "\n\n{English_Review}"
- )
- chain_two = LLMChain(llm=llm, prompt=second_prompt,
- output_key="summary"
- )
- # 链2:输入English_Review,输出summary
-
- third_prompt = ChatPromptTemplate.from_template(
- "What language is the following review:\n\n{Review}"
- )
- chain_three = LLMChain(llm=llm, prompt=third_prompt,
- output_key="language"
- )
- # 链3:输入Review,输出language
-
- fourth_prompt = ChatPromptTemplate.from_template(
- "Write a follow up response to the following "
- "summary in the specified language:"
- "\n\nSummary: {summary}\n\nLanguage: {language}"
- )
- chain_four = LLMChain(llm=llm, prompt=fourth_prompt,
- output_key="followup_message"
- )
- # 链4:输入summary、language,输出followup_message
-
- overall_chain = SequentialChain(
- chains=[chain_one, chain_two, chain_three, chain_four],
- input_variables=["Review"],
- output_variables=["English_Review", "summary","followup_message"],
- verbose=True
- )
- # 构建完整链,输入Review,输出"English_Review", "summary","followup_message"
-
- overall_chain(review)
路由链类似一个while else的函数,根据输入值,选择对应的路由(路径)进行后续的链路。整个路由链一般一个输入,一个输出。
- physics_template = """You are a very smart physics professor. \
- You are great at answering questions about physics in a concise\
- and easy to understand manner. \
- When you don't know the answer to a question you admit\
- that you don't know.
- Here is a question:
- {input}"""
-
-
- math_template = """You are a very good mathematician. \
- You are great at answering math questions. \
- You are so good because you are able to break down \
- hard problems into their component parts,
- answer the component parts, and then put them together\
- to answer the broader question.
- Here is a question:
- {input}"""
-
- history_template = """You are a very good historian. \
- You have an excellent knowledge of and understanding of people,\
- events and contexts from a range of historical periods. \
- You have the ability to think, reflect, debate, discuss and \
- evaluate the past. You have a respect for historical evidence\
- and the ability to make use of it to support your explanations \
- and judgements.
- Here is a question:
- {input}"""
-
-
- computerscience_template = """ You are a successful computer scientist.\
- You have a passion for creativity, collaboration,\
- forward-thinking, confidence, strong problem-solving capabilities,\
- understanding of theories and algorithms, and excellent communication \
- skills. You are great at answering coding questions. \
- You are so good because you know how to solve a problem by \
- describing the solution in imperative steps \
- that a machine can easily interpret and you know how to \
- choose a solution that has a good balance between \
- time complexity and space complexity.
- Here is a question:
- {input}"""
-
- # 创建4种提示词模板
-
- prompt_infos = [
- {
- "name": "physics",
- "description": "Good for answering questions about physics",
- "prompt_template": physics_template
- },
- {
- "name": "math",
- "description": "Good for answering math questions",
- "prompt_template": math_template
- },
- {
- "name": "History",
- "description": "Good for answering history questions",
- "prompt_template": history_template
- },
- {
- "name": "computer science",
- "description": "Good for answering computer science questions",
- "prompt_template": computerscience_template
- }
- ]
- # 提示词要点信息
-
- from langchain.chains.router import MultiPromptChain
- from langchain.chains.router.llm_router import LLMRouterChain,RouterOutputParser
- from langchain.prompts import PromptTemplate
- llm = ChatOpenAI(temperature=0)
- # 加载
-
-
- destination_chains = {}
- for p_info in prompt_infos:
- name = p_info["name"]
- prompt_template = p_info["prompt_template"]
- prompt = ChatPromptTemplate.from_template(template=prompt_template)
- chain = LLMChain(llm=llm, prompt=prompt)
- destination_chains[name] = chain
-
- destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
- destinations_str = "\n".join(destinations)
- # 根据提示词要点信息,生成4个链,存入destination中
-
- default_prompt = ChatPromptTemplate.from_template("{input}")
- default_chain = LLMChain(llm=llm, prompt=default_prompt)
- # 创建默认提示词和链
-
- MULTI_PROMPT_ROUTER_TEMPLATE = """Given a raw text input to a \
- language model select the model prompt best suited for the input. \
- You will be given the names of the available prompts and a \
- description of what the prompt is best suited for. \
- You may also revise the original input if you think that revising\
- it will ultimately lead to a better response from the language model.
- << FORMATTING >>
- Return a markdown code snippet with a JSON object formatted to look like:
- ```json
- {{{{
- "destination": string \ name of the prompt to use or "DEFAULT"
- "next_inputs": string \ a potentially modified version of the original input
- }}}}
- ```
- REMEMBER: "destination" MUST be one of the candidate prompt \
- names specified below OR it can be "DEFAULT" if the input is not\
- well suited for any of the candidate prompts.
- REMEMBER: "next_inputs" can just be the original input \
- if you don't think any modifications are needed.
- << CANDIDATE PROMPTS >>
- {destinations}
- << INPUT >>
- {{input}}
- << OUTPUT (remember to include the ```json)>>"""
- # 创建一个提示词模板,包含destination和input两个变量
-
- router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(
- destinations=destinations_str
- )
- # 提示词模板赋值destination
-
- router_prompt = PromptTemplate(
- template=router_template,
- input_variables=["input"],
- output_parser=RouterOutputParser(),
- )
- # 提示词模板赋值
-
- router_chain = LLMRouterChain.from_llm(llm, router_prompt)
- chain = MultiPromptChain(router_chain=router_chain,
- destination_chains=destination_chains,
- default_chain=default_chain, verbose=True)
- # 生成路由链
-
- chain.run("xxx")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。