赞
踩
哔站唐宇迪opencv课程——项目实战:答题卡识别判卷
【计算机视觉-OpenCV】唐宇迪博士教会了我大学四年没学会的OpenCV OpenCV计算机视觉实战全套课程(附带课程课件资料+课件笔记+源码)_哔哩哔哩_bilibili
目录
方法:试卷扫描-轮廓检测-对每一个位置指定掩码 -统计里面非零值大小-哪个选项值最大就选的是哪个
导入工具包
- import numpy as np
- import argparse
- import imutils
- import cv2
设置参数
- ap=argparse.ArgumentParser()
- ap.add_argument("-i","--image",required=True,help="path to the input image")
- args=vars(ap.parse_args())
正确答案
- # 正确答案
- ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
'运行
绘图函数
- def cv_show(name,img):
- cv2.imshow(name, img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
'运行
- #预处理
- image = cv2.imread(args["image"])
- contours_img = image.copy()
- gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#灰度
- blurred = cv2.GaussianBlur(gray,(5,5),0)#高斯滤波去噪音
- cv_show('blurred',blurred)
-
高斯滤波 :
- #边缘检测
- edges = cv2.Canny(blurred,75,200)
- cv_show("edges",edges)
边缘检测:
-
- #轮廓检测
- cnts = cv2.findContours(edges.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(contours_img,cnts,-1,(0,0,255),3)
- cv_show("contours_img",contours_img)
- docCnt = None
轮廓检测:
- #确保检测到了
- if len(cnts) > 0:
- #根据轮廓大小进行排序
- cnts = sorted(cnts,key=cv2.contourArea,reverse=True)
-
- #遍历每一个轮廓
- for c in cnts:
- #近似
- peri = cv2.arcLength(c,True)
- approx = cv2.approxPolyDP(c,0.02*peri,True) #近似轮廓
-
- # 准备做透视变换
- if len(approx) == 4:
- docCnt = approx
- break #找到了做透视变换的四个坐标了
- #执行透视变换
- warped = four_point_transform(gray,docCnt.reshape(4,2))
- cv_show("warped",warped)

- def four_point_transform(image,pts):
- #获取输入坐标点
- rect = order_points(pts)
- (tl,tr,br,bl) = rect
-
- #计算输入的w和h值
- widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
- widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
- maxWidth = max(int(widthA),int(widthB))
-
- heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
- heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
- maxHeight = max(int(heightA),int(heightB))
-
- #变换后对应坐标位置
- dst = np.array([
- [0, 0],
- [maxWidth - 1, 0],
- [maxWidth - 1, maxHeight - 1],
- [0, maxHeight - 1]], dtype="float32")
-
- #计算变换矩阵
- M = cv2.getPerspectiveTransform(rect,dst)
- warped = cv2.warpPerspective(image,M,(maxWidth,maxHeight))
-
- #返回变换后结果
- return warped
'运行
- def order_points(pts):
- #根据位置信息定位四个坐标点的位置
- rect = np.zeros((4,2),dtype="float32")
- s = pts.sum(axis=1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
- diff = np.diff(pts,axis=1)
- rect[1] = pts[np.argmin(diff)]
- rect[3] = pts[np.argmax(diff)]
- return rect
'运行
透视变换:
- #0tsu's阈值处理
- #参数:预处理好的图像、0:自动判断、cv2.THRESH_OTSU:自适应
- thresh=cv2.threshold(warped,0,255,cv2.THRESH_BINARY_INV|cv2.THRESH_OTSU)[1]
- cv_show('thresh',thresh)
二值结果:
- thresh_Contours=thresh.copy()
- #找到每一个圆圈轮廓
- cnts=cv2.findContours(thresh.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3)
- cv_show('thresh_Contours',thresh_Contours)
-
- questionCnts = []
- #遍历
- for c in cnts:
- #计算比例和大小
- (x,y,w,h) = cv2.boundingRect(c)#圆形的外接矩形
- ar = w/float(h)#宽和长的比值
-
- #根据实际情况设定标准
- if w>=20 and h>=20 and ar>=0.9 and ar<=1.1:
- questionCnts.append(c)
- #将每一个圆形的轮廓按照从上到下进行排序
- questionCnts = sort_contours(questionCnts,method="top-to-bottom")[0]
- def sort_contours(cnts,method="left-to-right"):
- reverse = False
- i = 0
- if method == "right-to-left" or method == "bottom-to-top":
- reverse = True
- if method == "top-to-bottom" or method == "bottom-to-top":
- i = 1
-
- # 计算外接矩形 boundingBoxes是一个元组
- boundingBoxes = [cv2.boundingRect(c) for c in cnts]#用一个最小的矩形,把找到的形状包起来x,y,h,w
-
- # sorted排序
- (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
- key=lambda b: b[1][i], reverse=reverse))
- return cnts,boundingBoxes# 轮廓和boundingBoxess
'运行
给每个题的五个轮廓从左到右排序,每个选项做掩码,与操作,统计选项里面非零值大小,哪个选项值最大就选的是哪个,记录下来与正确选项对比,计算正确的个数。
- correct=0
- for (q,i) in enumerate(np.arange(0,len(questionCnts),5)):
- #排序
- cnts = sort_contours(questionCnts[i:i+5])[0]
- bubble = None
-
- #遍历每一个结果
- for (j,c) in enumerate(cnts):
- #使用mask来判断结果
- mask = np.zeros(thresh.shape,dtype="uint8")
- cv2.drawContours(mask,[c],-1,255,-1)#-1表示填充
- cv_show('mask',mask)
- #通过计算非零像素点的数量来算是否选择这个答案
- mask = cv2.bitwise_and(thresh,thresh,mask=mask)
- #通过与操作,只保留了掩码为白色的那一个部分
- cv_show('mask',mask)
- total = cv2.countNonZero(mask)
-
- #通过阈值判断
- if bubble is None or total>bubble[0]:
- bubble = (total,j)
-
- #对比正确答案
- color = (0,0,255)
- k = ANSWER_KEY[q] #q代表现在检查的是第q个题
-
- #k是正确答案
- if k == bubble[1]:
- color = (0,255,0)
- correct += 1
-

-
- #绘图
- cv2.drawContours(warped,[cnts[k]],-1,color,3)
-
- score = (correct/5.0) * 100
- print("[INFO] score:{:.2f}%".format(score)) #这个%只是为了显示为60%,没有其他意思
- cv2.putText(warped,"{:.2f}%".format(score),(10,30),cv2.FONT_HERSHEY_SIMPLEX,0.9,3)
- cv_show("Original",image)
- cv_show("Exam",warped)
- import numpy as np
- import argparse
- import imutils
- import cv2
-
- ap = argparse.ArgumentParser()
- ap.add_argument("-i","--image",required=True,help="path to the input image")
- args = vars(ap.parse_args())
-
- # 正确答案
- ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
-
-
- def order_points(pts):
- # 一共4个坐标点
- rect = np.zeros((4, 2), dtype="float32")
-
- # 按顺序找到对应坐标0123分别是 左上,右上,右下,左下
- # 计算左上,右下
- s = pts.sum(axis=1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
-
- # 计算右上和左下
- diff = np.diff(pts, axis=1)
- rect[1] = pts[np.argmin(diff)]
- rect[3] = pts[np.argmax(diff)]
-
- return rect
-
-
- def four_point_transform(image, pts):
- # 获取输入坐标点
- rect = order_points(pts)
- (tl, tr, br, bl) = rect
-
- # 计算输入的w和h值
- widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
- widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
- maxWidth = max(int(widthA), int(widthB))
-
- heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
- heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
- maxHeight = max(int(heightA), int(heightB))
-
- # 变换后对应坐标位置
- dst = np.array([
- [0, 0],
- [maxWidth - 1, 0],
- [maxWidth - 1, maxHeight - 1],
- [0, maxHeight - 1]], dtype="float32")
-
- # 计算变换矩阵
- M = cv2.getPerspectiveTransform(rect, dst)
- warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
-
- # 返回变换后结果
- return warped
-
-
- def sort_contours(cnts, method="left-to-right"):
- reverse = False
- i = 0
- if method == "right-to-left" or method == "bottom-to-top":
- reverse = True
- if method == "top-to-bottom" or method == "bottom-to-top":
- i = 1
- boundingBoxes = [cv2.boundingRect(c) for c in cnts]
- (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
- key=lambda b: b[1][i], reverse=reverse))
- return cnts, boundingBoxes
-
-
- def cv_show(name, img):
- cv2.imshow(name, img)
- cv2.waitKey(0)
- cv2.destroyAllWindows()
-
-
- # 预处理
- image = cv2.imread(args["image"])
- contours_img = image.copy()
- gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
- blurred = cv2.GaussianBlur(gray, (5, 5), 0)
- cv_show('blurred', blurred)
- edged = cv2.Canny(blurred, 75, 200)
- cv_show('edged', edged)
-
- # 轮廓检测
- cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(contours_img, cnts, -1, (0, 0, 255), 3)
- cv_show('contours_img', contours_img)
- docCnt = None
-
- # 确保检测到了
- if len(cnts) > 0:
- # 根据轮廓大小进行排序
- cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
-
- # 遍历每一个轮廓
- for c in cnts:
- # 近似
- peri = cv2.arcLength(c, True)
- approx = cv2.approxPolyDP(c, 0.02 * peri, True)
-
- # 准备做透视变换
- if len(approx) == 4:
- docCnt = approx
- break
-
- # 执行透视变换
-
- warped = four_point_transform(gray, docCnt.reshape(4, 2))
- cv_show('warped', warped)
- # Otsu's 阈值处理
- thresh = cv2.threshold(warped, 0, 255,
- cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
- cv_show('thresh', thresh)
- thresh_Contours = thresh.copy()
- # 找到每一个圆圈轮廓
- cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
- cv2.CHAIN_APPROX_SIMPLE)[1]
- cv2.drawContours(thresh_Contours, cnts, -1, (0, 0, 255), 3)
- cv_show('thresh_Contours', thresh_Contours)
- questionCnts = []
-
- # 遍历
- for c in cnts:
- # 计算比例和大小
- (x, y, w, h) = cv2.boundingRect(c)
- ar = w / float(h)
-
- # 根据实际情况指定标准
- if w >= 20 and h >= 20 and ar >= 0.9 and ar <= 1.1:
- questionCnts.append(c)
-
- # 按照从上到下进行排序
- questionCnts = sort_contours(questionCnts,
- method="top-to-bottom")[0]
- correct = 0
-
- # 每排有5个选项
- for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
- # 排序
- cnts = sort_contours(questionCnts[i:i + 5])[0]
- bubbled = None
-
- # 遍历每一个结果
- for (j, c) in enumerate(cnts):
- # 使用mask来判断结果
- mask = np.zeros(thresh.shape, dtype="uint8")
- cv2.drawContours(mask, [c], -1, 255, -1) # -1表示填充
- cv_show('mask', mask)
- # 通过计算非零点数量来算是否选择这个答案
- mask = cv2.bitwise_and(thresh, thresh, mask=mask)
- cv_show('mask', mask)
- total = cv2.countNonZero(mask)
-
- # 通过阈值判断
- if bubbled is None or total > bubbled[0]:
- bubbled = (total, j)
-
- # 对比正确答案
- color = (0, 0, 255)
- k = ANSWER_KEY[q]
-
- # 判断正确
- if k == bubbled[1]:
- color = (0, 255, 0)
- correct += 1
-
- # 绘图
- cv2.drawContours(warped, [cnts[k]], -1, color, 3)
-
- score = (correct / 5.0) * 100
- print("[INFO] score: {:.2f}%".format(score))
- cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
- cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
- cv2.imshow("Original", image)
- cv2.imshow("Exam", warped)
- cv2.waitKey(0)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。