赞
踩
目录
下面一串代码是关于如何实现斐波那契数列,代码非常简洁,其实编程是非常灵活的,一个功能可以有不同的实现方法,通常我们需要找到效率最高的,同时代码量非常可观,简洁的理想代码。
但代码和效率是充分非必要条件,代码简洁的不一定效率就高,而效率高的代码不见得就非常简洁所以我们需要有一个衡量代码效率的标准,那该如何衡量呢?
- long long Fib(int N)
- {
- if(N < 3)
- return 1;
-
- return Fib(N-1) + Fib(N-2);
- }
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个 分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
下面有一串代码,我们来看看
- // 请计算一下Func1中++count语句总共执行了多少次?
- void Func1(int N)
- {
- int count = 0;
- for (int i = 0; i < N ; ++ i)
- {
- for (int j = 0; j < N ; ++ j)
- {
- ++count;
- }
- }
-
- for (int k = 0; k < 2 * N ; ++ k)
- {
- ++count;
- }
- int M = 10;
- while (M--)
- {
- ++count;
- }
- printf("%d\n", count);
- }
刚开始学习时间复杂度时,陷入一个比较懵逼的环节。不知道从哪里入手,也没有思路。关键的问题就是在于他执行的次数,而往往执行的次数就和循环非常大的关系,想要知道一个代码的时间复杂度时,找循环是最关键的。
Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为: N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。 另外有些算法的时间复杂度存在最好、平均和最坏情况: 最坏情况:任意输入规模的最大运行次数(上界) 平均情况:任意输入规模的期望运行次数 最好情况:任意输入规模的最小运行次数(下界) 例如:在一个长度为N数组中搜索一个数据x 最好情况:1次找到 最坏情况:N次找到 平均情况:N/2次找到 在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
实例1
- // 计算Func2的时间复杂度?
- void Func2(int N)
- {
- int count = 0;
- for (int k = 0; k < 2 * N ; ++ k)
- {
- ++count;
- }
- int M = 10;
- while (M--)
- {
- ++count;
- }
- printf("%d\n", count);
- }
分析:通过for循环可以得知,程序循环了2*N+10次,根据大O阶方法可以得知,该程序时间复杂度为O(N)
实例2
- // 计算Func3的时间复杂度?
- void Func3(int N, int M)
- {
- int count = 0;
- for (int k = 0; k < M; ++ k)
- {
- ++count;
- }
- for (int k = 0; k < N ; ++ k)
- {
- ++count;
- }
- printf("%d\n", count);
- }
分析:两个循环分别执行M次和N次,总的时间复杂度是O(M+N)次。
实例3
- // 计算Func4的时间复杂度?
- void Func4(int N)
- {
- int count = 0;
- for (int k = 0; k < 100; ++ k)
- {
- ++count;
- }
- printf("%d\n", count);
- }
分析:根据循环可知,最坏情况下,循环会执行100次,时间复杂度为O(1)。
可以看到,在学习时间复杂度的过程中,要学会寻找并总结出程序执行的次数,再根据大O阶方法推导出正确的时间复杂度。
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。 空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。 注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1
- // 计算BubbleSort的空间复杂度?
- void BubbleSort(int* a, int n)
- {
- assert(a);
- for (size_t end = n; end > 0; --end)
- {
- int exchange = 0;
- for (size_t i = 1; i < end; ++i)
- {
- if (a[i-1] > a[i])
- {
- Swap(&a[i-1], &a[i]);
- exchange = 1;
- }
- }
- if (exchange == 0)
- break;
- }
- }
在运行过程中,可以看到,除了函数定义的数组和常量以外,程序没有再申请其他空间,可以看作该程序申请了常数个额外空间,空间复杂度为O(1)。
实例2
- // 计算Fibonacci的空间复杂度?
- // 返回斐波那契数列的前n项
- long long* Fibonacci(size_t n)
- {
- if(n==0)
- return NULL;
-
- long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
- fibArray[0] = 0;
- fibArray[1] = 1;
- for (int i = 2; i <= n ; ++i)
- {
- fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
- }
- return fibArray;
- }
该程序动态申请了一个空间大小为n+1的数组,空间复杂度为O(N)。
实例3
- // 计算阶乘递归Fac的空间复杂度?
- long long Fac(size_t N)
- {
- if(N == 0)
- return 1;
-
- return Fac(N-1)*N;
- }
该程序是一个典型的递归函数,它递归调用自己N次,相当于开辟N个函数栈帧供它使用,空间复杂度为O(N)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。