赞
踩
目录
mediapipe中有人体姿态检测的功能,今天我们就将实现最最基础的人体姿态估计项目,它的应用还是有很多的,比如:AI锻炼检测标准、老人跌倒检测等,这些方面其实已经有了很多的参考资料了,当然在我知道的当中用yolo的倒是挺多的。那么今天我们将会通过人物跳舞的视频进行一个姿态的检测。
可以看见GIF图片中人物跳舞视频检测到的人体姿态骨架。(窗口大小的问题,膝盖下的点没有检测到)
如上图,你完全按这个模式照搬过去,完整的视频已经被我拆分好了,大家有兴趣的可以从我的GitHub中获得完整视频与拆分好的视频。
- import cv2
- import mediapipe as mp
- import time
-
- mpDraw = mp.solutions.drawing_utils
- mpPose = mp.solutions.pose
- pose = mpPose.Pose()
-
- cap = cv2.VideoCapture('Pose_videos/02.mp4')
- pTime = 0
- while True:
- success, img = cap.read()
- imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- results = pose.process(imgRGB)
- # print(results.pose_landmarks)
- if results.pose_landmarks:
- mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)
- for id, lm in enumerate(results.pose_landmarks.landmark):
- h, w, c = img.shape
- print(id, lm)
- cx, cy = int(lm.x * w), int(lm.y * h)
- cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)
- #######################################################################################
- cTime = time.time()
- fps = 1 / (cTime - pTime)
- pTime = cTime
- cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
- (255, 0, 0), 3)
-
- cv2.imshow("Image", img)
- k=cv2.waitKey(1)
- if k==27:
- break
- import cv2
- import mediapipe as mp
- import time
-
- class poseDetector():
-
- def __init__(self, mode=False, upBody=False, smooth=True,
- detectionCon=0.5, trackCon=0.5):
-
- self.mode = mode
- self.upBody = upBody
- self.smooth = smooth
- self.detectionCon = detectionCon
- self.trackCon=trackCon
-
- self.mpDraw = mp.solutions.drawing_utils
- self.mpPose = mp.solutions.pose
- self.pose = self.mpPose.Pose(self.mode, self.upBody, self.smooth)
-
- def findPose(self, img, draw=True):
- imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- self.results = self.pose.process(imgRGB)
- if self.results.pose_landmarks:
- if draw:
- self.mpDraw.draw_landmarks(img, self.results.pose_landmarks,
- self.mpPose.POSE_CONNECTIONS)
- return img
-
- def findPosition(self, img, draw=True):
- self.lmList = []
- if self.results.pose_landmarks:
- for id, lm in enumerate(self.results.pose_landmarks.landmark):
- h, w, c = img.shape
- # print(id, lm)
- cx, cy = int(lm.x * w), int(lm.y * h)
- self.lmList.append([id, cx, cy])
- if draw:
- cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)
- return self.lmList
-
- def main():
- cap = cv2.VideoCapture('Pose_videos/02.mp4')
- pTime = 0
- detector = poseDetector()
- while True:
- success, img = cap.read()
- img = detector.findPose(img)
- lmList = detector.findPosition(img, draw=False)
- if len(lmList) != 0:
- print(lmList[14])
- cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED)
-
- cTime = time.time()
- fps = 1 / (cTime - pTime)
- pTime = cTime
-
- cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
- (255, 0, 0), 3)
-
- cv2.imshow("Image", img)
- k=cv2.waitKey(1)
- if k==27:
- break
-
- if __name__ == "__main__":
- main()
此模块参照与cvzone中的cvzone.PoseModule模块,大家以后也要学习一下这种制作模块的思想,对大家做项目时是很有帮助的。
- import cv2
- import time
- import PoseModule as pm
-
- cap = cv2.VideoCapture('Pose_videos/02.mp4')
- pTime = 0
- detector = pm.poseDetector()
- while True:
- success, img = cap.read()
- img = detector.findPose(img)
- lmList = detector.findPosition(img, draw=False)
- if len(lmList) !=0:
- print(lmList[14])
- cv2.circle(img, (lmList[14][1], lmList[14][2]), 15, (0, 0, 255), cv2.FILLED)
-
- cTime = time.time()
- fps = 1 / (cTime - pTime)
- pTime = cTime
-
- cv2.putText(img, str(int(fps)), (70, 50), cv2.FONT_HERSHEY_PLAIN, 3,
- (255, 0, 0), 3)
-
- cv2.imshow("Image", img)
- k = cv2.waitKey(1)
- if k == 27:
- break
可以看到,在以后做项目时就可以从模块当中copy代码,实现会变得更加的方便。
此为人体姿态各点的对应图,如果你想要检测某一点的信息,则需要查看此图。
(此图来源于Pose | mediapipe)
GitHub:18 Human Posture Recognition
本次项目是按照mediapipe提供的人体姿态估计的功能实现的项目,非常的基础和简单,后面如果我有更好的点子会继续更新这部分内容。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。