赞
踩
下面是一个使用Python语言和PyTorch库来创建一个简单的古诗生成模型的示例代码。这个模型使用了一个简单的RNN架构。请注意,这个示例是为了说明目的而简化的,实际应用中可能需要更复杂的模型和更多的调优。首先,确保您已经安装了PyTorch和TorchText库。如果没有安装,可以通过以下命令安装:
pip install torch torchtext ```python import torch import torch.nn as nn import torch.optim as optim from torchtext.datasets import WikiText2 from torchtext.data import Field, LabelField, TabularDataset from torchtext.data.metrics import accuracy # 定义设备,用于确定是使用CPU还是GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定义字段,用于处理文本和标签 TEXT = Field(tokenize='spacy', include_lengths=True) LABEL = LabelField(dtype=torch.int64) # 创建数据集 train_data, test_data = WikiText2.splits(TEXT, LABEL) # 定义模型 class SimpleRNN(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(SimpleRNN, self).__init__() self.rnn = nn.RNN(input_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim) def forward(self, x): hidden = self.init_hidden() output, hidden = self.rnn(x, hidden) output = self.fc(output) return output def init_hidden(self): return torch.zeros(1, 1, self.hidden_dim).to(device) # 设置模型参数 input_dim = 1000 # 假设词汇表大小为1000 hidden_dim = 128 output_dim = 1000 # 假设输出也是1000个词汇 # 实例化模型 model = SimpleRNN(input_dim, hidden_dim, output_dim) model.to(device) # 定义损失函数和优化器 loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 model.train() # 设置为训练模式 for epoch in range(10): # 训练10个epochs for sentence, label in train_data: # 将数据转移到设备上 sentence = sentence.to(device) label = label.to(device) # 初始化隐藏状态 hidden = model.init_hidden() # 前向传播 output = model(sentence) # 计算损失 loss = loss_function(output, label) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch+1}/{10} - Loss: {loss.item()}') # 评估模型 model.eval() # 设置为评估模式 with torch.no_grad(): for sentence, label in test_data: sentence = sentence.to(device) label = label.to(device) hidden = model.init_hidden() output = model(sentence) # 计算准确率 predicted = output.argmax(1) accuracy += (predicted == label).sum().item() print(f'Accuracy: {accuracy/len(test_data)}') # 生成古诗 def generate_sentence(model, seed_text, num_words): model.eval() with torch.no_grad(): hidden = model.init_hidden() sentence = seed_text.split() for _ in range(num_words): if len(sentence) > 1: input_tensor = torch.tensor([[TEXT.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。