赞
踩
最近由于工作项目,需要判断两个txt文本是否相似,于是开始在网上找资料研究,因为在程序中会把文本转换成String再做比较,所以最开始找到了这篇关于 距离编辑算法 Blog写的非常好,受益匪浅。
于是我决定把它用到项目中,来判断两个文本的相似度。但后来实际操作发现有一些问题:直接说就是查询一本书中的相似章节花了我7、8分钟;这是我不能接受……
于是停下来仔细分析发现,这种算法在此项目中不是特别适用,由于要判断一本书中是否有相同章节,所以每两个章节之间都要比较,若一本书书有x章的话,这里需对比x(x-1)/2次;而此算法采用矩阵的方式,计算两个字符串之间的变化步骤,会遍历两个文本中的每一个字符两两比较,可以推断出时间复杂度至少为document1.length × document2.length,我所比较的章节字数平均在几千~一万字;这样计算实在要了老命。
想到Lucene中的评分机制,也是算一个相似度的问题,不过它采用的是计算向量间的夹角(余弦公式),在google黑板报中的:数学之美(余弦定理和新闻分类) 也有说明,可以通过余弦定理来判断相似度;于是决定自己动手试试。
首相选择向量的模型:在以字为向量还是以词为向量的问题上,纠结了一会;后来还是觉得用字,虽然词更为准确,但分词却需要增加额外的复杂度,并且此项目要求速度,准确率可以放低,于是还是选择字为向量。
然后每个字在章节中出现的次数,便是以此字向量的值。现在我们假设:
章节1中出现的字为:Z1c1,Z1c2,Z1c3,Z1c4……Z1cn;它们在章节中的个数为:Z1n1,Z1n2,Z1n3……Z1nm;
章节2中出现的字为:Z2c1,Z2c2,Z2c3,Z2c4……Z2cn;它们在章节中的个数为:Z2n1,Z2n2,Z2n3……Z2nm;
其中,Z1c1和Z2c1表示两个文本中同一个字,Z1n1和Z2n1是它们分别对应的个数,
- public static double getSimilarity(String doc1, String doc2)
- {
- if (doc1 != null && doc1.Trim().Length > 0 && doc2 != null
- && doc2.Trim().Length > 0)
- {
- Dictionary<int, int[]> AlgorithmMap = new Dictionary<int, int[]>();
- //将两个字符串中的中文字符以及出现的总数封装到,AlgorithmMap中
- for (int i = 0; i < doc1.Length; i++)
- {
- char d1 = doc1.ToCharArray()[i];
- if (isHanZi(d1))
- {
- int charIndex = getGB2312Id(d1);
- if (charIndex != -1)
- {
- int[] fq=null;
- try
- {
- fq= AlgorithmMap[charIndex];
- }
- catch (Exception)
- {
- }
- finally {
- if (fq != null && fq.Length == 2)
- {
- fq[0]++;
- }
- else
- {
- fq = new int[2];
- fq[0] = 1;
- fq[1] = 0;
- AlgorithmMap.Add(charIndex, fq);
- }
- }
- }
- }
- }
-
- for (int i = 0; i < doc2.Length; i++)
- {
- char d2 = doc2.ToCharArray()[i];
- if (isHanZi(d2))
- {
- int charIndex = getGB2312Id(d2);
- if (charIndex != -1)
- {
- int[] fq=null;
- try
- {
- fq = AlgorithmMap[charIndex];
- }
- catch (Exception)
- {
- }
- finally {
- if (fq != null && fq.Length == 2)
- {
- fq[1]++;
- }
- else
- {
- fq = new int[2];
- fq[0] = 0;
- fq[1] = 1;
- AlgorithmMap.Add(charIndex, fq);
- }
- }
- }
- }
- }
-
- double sqdoc1 = 0;
- double sqdoc2 = 0;
- double denominator = 0;
- foreach (KeyValuePair<int, int[]> par in AlgorithmMap)
- {
- int[] c = par.Value;
- denominator += c[0] * c[1];
- sqdoc1 += c[0] * c[0];
- sqdoc2 += c[1] * c[1];
- }
- return denominator / Math.Sqrt(sqdoc1 * sqdoc2);
- }
- else
- {
- throw new Exception();
- }
- }
-
- public static bool isHanZi(char ch)
- {
- // 判断是否汉字
- return (ch >= 0x4E00 && ch <= 0x9FA5);
- }
-
- /**
- * 根据输入的Unicode字符,获取它的GB2312编码或者ascii编码,
- *
- * @param ch
- * 输入的GB2312中文字符或者ASCII字符(128个)
- * @return ch在GB2312中的位置,-1表示该字符不认识
- */
- public static short getGB2312Id(char ch)
- {
- try
- {
- byte[] buffer = System.Text.Encoding.GetEncoding("gb2312").GetBytes(ch.ToString());
- if (buffer.Length != 2)
- {
- // 正常情况下buffer应该是两个字节,否则说明ch不属于GB2312编码,故返回'?',此时说明不认识该字符
- return -1;
- }
- int b0 = (int)(buffer[0] & 0x0FF) - 161; // 编码从A1开始,因此减去0xA1=161
- int b1 = (int)(buffer[1] & 0x0FF) - 161; // 第一个字符和最后一个字符没有汉字,因此每个区只收16*6-2=94个汉字
- return (short)(b0 * 94 + b1);
- }
- catch (Exception e)
- {
- Console.WriteLine(e.Message);
- }
- return -1;
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。