当前位置:   article > 正文

pandas中的shift()函数用法_pandas shift

pandas shift

pandas中的shift()函数

语法:
shift(periods, freq, axis)
注释:

  1. period:表示移动的幅度,可以是正数,也可以是负数,默认值是1,1就表示移动一次,注意这里移动的都是数据,而索引是不移动的,移动之后没有对应值的,就赋值为NaN。

  2. freq: DateOffset, timedelta, or time rule string,可选参数,默认值为None,只适用于时间序列,如果这个参数存在,那么会按照参数值移动时间索引,而数据值没有发生变化。

3. axis: 轴向。0为垂,1为水平
  • 1

import pandas as pd
import numpy as np
import datetime
df = pd.DataFrame(np.arange(16).reshape(4,4),columns=['A','B','C','D'],index=pd.date_range('20130101', periods=4))
df
A	B	C	D
2013-01-01	0	1	2	3
2013-01-02	4	5	6	7
2013-01-03	8	9	10	11
2013-01-04	12	13	14	15
#默认是axis = 0轴的设定,当period为正时向下移动
df.shift(2)
A	B	C	D
2013-01-01	NaN	NaN	NaN	NaN
2013-01-02	NaN	NaN	NaN	NaN
2013-01-03	0.0	1.0	2.0	3.0
2013-01-04	4.0	5.0	6.0	7.0
#默认是axis = 0轴的设定,当period为负时向上移动
df.shift(-2)
​
A	B	C	D
2013-01-01	8.0	9.0	10.0	11.0
2013-01-02	12.0	13.0	14.0	15.0
2013-01-03	NaN	NaN	NaN	NaN
2013-01-04	NaN	NaN	NaN	NaN
#axis = 1,当period为正向右,为负向左移动
df.shift(2,axis=1)
A	B	C	D
2013-01-01	NaN	NaN	0.0	1.0
2013-01-02	NaN	NaN	4.0	5.0
2013-01-03	NaN	NaN	8.0	9.0
2013-01-04	NaN	NaN	12.0	13.0
# frep参数决定索引为日期,正加负减
df.shift(freq=datetime.timedelta(1))
A	B	C	D
2013-01-02	0	1	2	3
2013-01-03	4	5	6	7
2013-01-04	8	9	10	11
2013-01-05	12	13	14	15
df.shift(freq=datetime.timedelta(-1))
A	B	C	D
2012-12-31	0	1	2	3
2013-01-01	4	5	6	7
2013-01-02	8	9	10	11
2013-01-03	12	13	14	15

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家小花儿/article/detail/945397
推荐阅读
相关标签
  

闽ICP备14008679号