赞
踩
Token从字面意思上看是游戏代币,用在深度学习中的自然语言处理领域中时,代表着输入文字序列的“代币化”。那么海量语料中的文字序列,就可以转化为海量的代币,用来训练我们的模型。这样我们就能够理解“用于GPT-4训练的token数量大约为13万亿个”这句话的意思了。代币越多,训练次数越多,最终模型的质量一般也越好。13万亿个,这个数目是指在模型训练过程中所使用的数据集中的总token数,反映了模型在训练时接触到的数据规模之大。
在GPT-4模型中,token指的是输入文本序列中的基本单元。每个token代表了文本的一个组成部分,可以是单个单词、子词(如BERT中的WordPiece分词)或者在视觉任务中可能是图像patch的编码表示。
在深度学习的自然语言处理(NLP)中,代币化(Tokenization)是一个基本且关键的预处理步骤,它涉及将连续的文本序列分割成离散的、有意义的语言单元,这些单元通常被称为tokens。这个过程有助于计算机理解和处理人类自然语言。
具体来说:
词汇Tokenization:根据语法规则或词典,将文本划分为单词或术语。例如,“我爱自然语言处理”会被拆分成“我”、“爱”、“自然”和“语言处理”四个token。
字符Tokenization:将文本细粒度地分割为单个字符或子词。例如,上述句子在字符级别会被拆分成“我”、“爱”、“自”、“然”、“语”、“言”、“处”、“理”。
字节Pair Encoding(BPE)或Subword Tokenization:结合了词汇和字符级的优点,通过算法生成一种混合表示,包括常见单词和更复杂的结构,尤其是在处理罕见词汇时。
特殊Token:对于一些特定用途,模型可能还会引入特殊的tokens,如分隔符(用于标记句子边界)、填充符(用于保持序列长度一致)以及未知词符号(代表未见过的词汇)。
句法Tokenization:基于语法结构进行切分,比如短语或句子成分。
代币化后的tokens随后会经过嵌入层转换成向量表示,以便于输入到深度学习模型中进一步分析和建模。
具体到自然语言处理任务,当用户向GPT-4提供一个文本时,模型首先会使用Tokenizer将文本分割成一系列tokens。这些tokens随后被嵌入为连续向量,然后输入到Transformer模型进行自注意力计算和上下文理解。
当用户向GPT-4这样的先进自然语言处理模型提供文本输入时,确实首先会经过一个预处理步骤,其中的核心环节就是Tokenizer将文本进行代币化处理。GPT-4采用的Transformer架构要求输入数据以token的形式表示。
具体来说,GPT-4使用的Tokenizer(如Hugging Face Transformers库中的tokenizer
)通常会执行以下操作:
分词:将连续的文本分割成单词或子词。
添加特殊tokens:
[CLS]
用作整个句子的标记,有时用于分类任务的预测。[SEP]
用在句子对之间或者序列结束处作为分隔符。<pad>
或其他填充token,在需要填充到固定长度时使用。unk
(未知词token),代表词汇表中未包含的词汇。编码:将每个token映射到一个唯一的整数ID,形成一个可被模型理解的索引序列。
对于部分变体和优化,tokenizer可能还会应用Byte Pair Encoding (BPE) 或 WordPiece等算法来生成subword tokens,这样可以更有效地处理罕见词汇和OOV(Out Of Vocabulary)问题。
最终,得到的token序列会被转化为模型可以接受的嵌入向量形式,并输入到GPT-4模型中进行训练、推理或生成任务。
当用户提供的文本经过Tokenizer处理后,得到的token序列会经历以下步骤:
Token Embedding: 每个token会被映射到一个高维向量空间中的特定点,这个过程称为token嵌入(或词嵌入)。GPT-4模型内已经预训练好了特定的embedding矩阵,用于将每个token ID转换为对应的固定维度的向量表示。
位置编码(Positional Encoding): 为了保留原始文本中单词的顺序信息,模型还会对每个token嵌入加上一个位置编码。这样,模型就可以理解tokens在句子中的相对或绝对位置关系。
Transformer层输入:经过嵌入和位置编码后的tokens,就作为连续向量被送入Transformer模型中。在GPT-4这样的自回归语言模型中,这些向量首先通过多层自注意力机制进行计算,每层自注意力允许模型根据上下文理解每个token的意义。
自注意力计算与上下文理解:Transformer模型利用自注意力机制来捕捉全局依赖性,即每个token都能够关注到其他所有token的信息,从而形成对整个输入序列的上下文理解。
解码与生成:在推理阶段,GPT-4模型基于前面计算出的上下文理解结果,逐个预测下一个token的概率分布,并以此循环生成后续的tokens,直至生成完整的输出文本或者达到终止条件为止。
在GPT-4模型训练过程中,其处理的token总数非常庞大,达到13万亿个token级别,这意味着模型基于大量数据进行了充分学习,能够理解和生成复杂的语言结构及内容。
GPT-4模型训练所使用的数据规模极其庞大,处理的token总数达到13万亿级别。这意味着模型在训练过程中接触了各种各样的语言表达、上下文情境以及复杂的结构化和非结构化内容,从而具备了对大量领域知识的广泛理解能力和细致入微的语言生成能力。
通过学习这些海量的数据,GPT-4能够捕捉到人类语言中的细微差别,并在生成文本时实现高度连贯性和逻辑一致性。这样的大规模训练为模型提供了更强的一般性泛化能力,使其不仅能够在已知领域中表现优秀,还能在一定程度上适应未曾见过的新情境,生成高质量、自然流畅的文本输出。
在实际应用中,GPT-4可以处理的最大连续token数为32768个,这个长度使得模型在处理长文本或对话时具有更强的连贯性和上下文保持能力。
GPT-4模型在实际应用中可以处理的最大连续token数为32768个,这个显著增加的上下文窗口长度相较于前代模型是一个重大突破。这意味着对于长篇文章、文档、代码片段或者复杂的对话交互场景,GPT-4能够更好地理解和利用更长的历史信息流来进行推理和生成,从而增强了模型对文本连贯性和上下文依赖关系的把握能力。
由于能够记忆并考虑如此大跨度的上下文信息,GPT-4在完成如文本续写、文档总结、代码编写、多轮对话等任务时,能更准确地根据之前的输入内容进行响应,并保持前后一致性,极大地提高了模型的实用性与表现力。
在Transformer架构中,Token 是对输入序列的基本单元的表示。对于文本数据,一个token可以是单个词、子词(如BERT中的WordPiece分词结果)、字符或者特定类型的标记(例如特殊符号用于指示句子开始或结束)。具体来说:
NLP中的Token处理:
视觉任务中的Token:
特殊Token:
计算流程:
总结起来,token在Transformer中是构成输入序列的基本元素,它们经过一系列复杂的变换和计算,最终帮助模型理解和处理复杂的序列数据。
在Transformer模型中,token和self-attention之间有着紧密的联系:
Token:
Self-Attention:
关系阐述:
总结来说,在Transformer模型中,token作为基本的数据元素参与self-attention计算过程,进而形成具有全局上下文信息的表示,这对于理解复杂的序列关系至关重要。
在自注意力层中,每个输入token(无论是单词、子词或图像patch的嵌入向量)都会经历以下过程:
线性投影:首先,将每个token的嵌入向量通过三个不同的权重矩阵(W_Q, W_K, W_V)进行线性变换,分别得到Query(Q)、Key(K)和Value(V)矩阵。这些矩阵的维度通常是相同的,但它们代表了不同视角下的token信息。
计算注意力得分:接下来,计算每个Query与所有Key之间的相似度得分,通常采用点积操作后除以一个缩放因子(sqrt(d_k)),其中d_k是Key向量的维度,目的是确保注意力分布的稳定性。然后将结果通过softmax函数归一化为概率分布。
加权求和获得上下文向量:最后,用上一步骤得到的每个Query对应的注意力分布权重去加权求和所有的Value向量,生成该Query token的新表示,即上下文相关的向量。
组合输出:每个原始token经过上述self-attention机制后得到了新的上下文感知向量,这些向量可以进一步经过残差连接和层归一化等操作,然后再进入下一层网络或者用于最终的预测任务。
在自然语言处理(NLP)和计算机视觉(CV)等领域的Transformer模型中,token是一个非常基础且重要的概念:
在NLP中的Token:
在CV中的Token:
总的来说,token是原始输入数据的一种抽象和离散化表示,在Transformer架构中,它们经过编码、注意力机制处理后,能够捕捉到数据内部复杂的上下文依赖关系,从而帮助模型完成各种复杂的任务。
在自然语言处理(NLP)中,“token”这个词有特定的含义:
定义:
符号与表达:
计算方式:
总之,在NLP中,token作为自然语言处理的第一步,从原始文本中抽取出来,并通过各种方法将其转化为机器可理解的形式,从而参与到后续的文本分类、情感分析、命名实体识别等各种任务之中。
Tokenization(标记化)是将文本数据分割成离散的符号或词汇单元的过程,这些单元被称为tokens。在NLP中,tokens并不直接具有维度大小的概念,因为它们最初只是文本中的基本单位,比如单词、字符或子词等。
然而,在后续处理中,当tokens被转换为数值表示时,就会涉及到维度大小的问题:
向量化表示:
深度学习框架下的表示:
至于“符号表示”,在tokenization阶段,tokens通常是原始文本中的字符串形式,例如英文中的"apple"、“the”等,或者中文中的"苹果"、“的”等。而转换成数值表示后,这些字符串就被编码成了数字索引(在独热编码或one-hot方式下)或浮点数向量(在词嵌入表示下)。
在自然语言处理(NLP)和计算机视觉等领域的Transformer模型中,token是一个基本的抽象概念,用于表示输入数据中的最小可处理单元。以下是对token理解的关键点:
文本处理中的Token:
在NLP中,token通常是指文本序列中的单个词、子词或字符。例如,在英文文本中,一个token可以是“cat”、“jumped”或单个字母“a”。对于分词更为细致的模型如BERT,可能会使用WordPiece算法将复杂的词汇拆分为多个子词tokens,如“playing”会被分成“play”和“##ing”。图像处理中的Token:
在视觉Transformer(ViT)中,token代表了图像被分割成的小块或者patch。每个patch经过线性变换后得到一个向量,这个向量就成为了图像的一个token。Token Embedding:
无论是在文本还是图像中,每个token都会通过嵌入层转换为一个固定维度的向量,这被称为token embedding。这种embedding包含了token的基本语义信息,并且通常是连续实数向量,便于神经网络进行后续的数学运算。Token在Transformer中的作用:
Transformer模型处理这些token时,利用self-attention机制来捕获它们之间的上下文依赖关系。每个token通过自注意力模块生成新的上下文相关的表示,这些表示综合了整个序列的信息。特殊Token:
在一些特定情况下,还会引入特殊的tokens,比如CLS (Classification) token用于分类任务,SEP (Separator) token用于区分句子或段落,以及Padding token用于填充较短序列以达到统一长度。总之,token是Transformer模型理解和处理复杂序列数据的基础单位,它通过嵌入及自注意力机制使得模型能够学习到序列内部丰富的结构和语义信息。
在Transformer模型中,Token 是对输入序列中的基本单元(如自然语言处理中的单词或子词)的表示。对于视觉任务而言,token可以是图像patch的嵌入表示。每个token通过嵌入层(通常是一个线性变换)转换为一个固定维度的向量,这个向量包含了该token的语义信息。
上下文变量(Context Variables) 在Transformer中指的是经过自注意力机制计算后得到的新表示,它综合了整个序列中所有token的信息。Transformer通过Self-Attention模块来实现这一点:
定义:
计算:
实现(简化版示例):
Python- 1class MultiHeadAttention(nn.Module):
- 2 def __init__(self, d_model, num_heads):
- 3 super(MultiHeadAttention, self).__init__()
- 4 self.num_heads = num_heads
- 5 self.d_k = d_model // num_heads
- 6 self.linear_layers = nn.ModuleList([
- 7 nn.Linear(d_model, d_model) for _ in range(3) # 分别用于Q, K, V
- 8 ])
- 9 self.output_linear = nn.Linear(d_model, d_model)
- 10
- 11 def forward(self, Q, K, V, attn_mask=None):
- 12 batch_size, seq_length, d_model = Q.size()
- 13 Q = self.linear_layers[0](Q)
- 14 K = self.linear_layers[1](K)
- 15 V = self.linear_layers[2](V)
- 16
- 17 # reshape for multi-head attention
- 18 Q = Q.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
- 19 K = K.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
- 20 V = V.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
- 21
- 22 # scaled dot-product attention
- 23 scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
- 24 if attn_mask is not None:
- 25 scores.masked_fill_(attn_mask == 0, -float('inf'))
- 26 attn_weights = torch.softmax(scores, dim=-1)
- 27
- 28 # context vectors
- 29 context = torch.matmul(attn_weights, V).transpose(1, 2).contiguous().view(batch_size, seq_length, d_model)
- 30
- 31 # final linear projection
- 32 output = self.output_linear(context)
- 33
- 34 return output, attn_weights
请注意,上述代码实现了多头注意力机制的一个简化版本,实际应用中还需要考虑其他细节,比如残差连接、LayerNorm等组件。同时,位置编码部分也需要在输入序列嵌入之前添加。
附:
讲讲GPT-4模型中13万亿个token的故事:
理解GPT-4模型的能力水平,可以换一种理解方式。打个比方,假如你在街机游戏厅打游戏,突然间,老板给了你13万亿个游戏币,这些游戏币打完以后,想想你的水平会咋样?这就是GPT-4模型的语言能力水平体现。当然,实际中不推荐过度玩游戏哈。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。