赞
踩
leetcode题目:(链接https://leetcode-cn.com/problems/dui-lie-de-zui-da-zhi-lcof)
请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。
若队列为空,pop_front 和 max_value 需要返回 -1。
示例 :
输入:
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]
输入:
["MaxQueue","pop_front","max_value"]
[[],[],[]]
输出: [null,-1,-1]
限制:
1 <= push_back,pop_front,max_value的总操作数 <= 10000
1 <= value <= 10^5
首先先解释下题目,很多人不明白在问什么。就是说要你实现一个队列,这个队列可以执行入队、出队、返回最大值的操作。并且要求每一个操作的均摊时间复杂度为 O ( 1 ) O(1) O(1),具体均摊复杂度的概念请自行百度。
入队和队操作较为容易,关键在于如何让取最大值的操作符合
O
(
1
)
O(1)
O(1)的要求。由于有时间复杂度的要求,首先排除暴力法。在此我们以空间换取时间,除了使用一个Queue作为本来的队列以外,再使用一个双端队列Deque来辅助保存最大值的信息,我们永远将最大值置于双端队列头部。
要采取这种方法首先要明确一个点:一个数字进入队列以后,它之前的所有比它小的数字不再对最大值产生影响1。
入队操作:
出队操作:
求最大值操作:
//Java public class MaxQueue { private Queue<Integer> qe; private Deque<Integer> dq; public MaxQueue() { qe = new LinkedList<Integer>(); dq = new ArrayDeque<Integer>(); } public int max_value() { if(dq.isEmpty()) { return -1; } else { return dq.peekFirst(); } } public void push_back(int value) { qe.offer(value); while(!dq.isEmpty() && dq.peekLast() < value) { dq.pollLast(); } dq.offerLast(value); } public int pop_front() { if(qe.isEmpty()) { return -1; } else { int front = qe.poll(); if(front == dq.peekFirst()) { dq.pollFirst(); } return front; } } }
你可以设想一下,当队列中有1、2、5、6的时候,当队尾插入一个3的时候,由于1和2出队必定在3之前,所以1和2不可能成为队列的最大值了。 ↩︎
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。