当前位置:   article > 正文

streamlit:如何快速构建一个应用,不会前端也能写出好看的界面_streamlit教程

streamlit教程

通过本文你可以了解到:

  • 如何安装streamlit,运行起来第一个demo
  • 熟悉streamlit的基本语法,常用的一些组件
  • 使用streamlit库构建应用

大模型学习参考:

  1. 大模型学习资料整理:如何从0到1学习大模型,搭建个人或企业RAG系统,如何评估与优化(更新中…)

欢迎大家访问个人博客网址:https://www.maogeshuo.com,博主努力更新中…

前言

在这里插入图片描述

Streamlit是一个开源的Python框架,供数据科学家和AI/ML工程师使用,只需几行代码即可交付交互式数据应用程序。

官方文档地址:streamlit doc

经验:

  • 官方给出了非常多的组件使用案例,在编写代码时请结合官方文档+pycharm的代码提示+函数注释,函数注释中一班都给出了组件的具体使用
  • 修改完布局后,刷新访问网站,可以实时查看更改后的结果,无需重新streamlite run demo.py

streamlit 安装

pip install streamlit
streamlit hello
  • 1
  • 2

执行完streamlit hello后,点击 http://localhost:8501
在这里插入图片描述
查看demo
在这里插入图片描述

streamlit组件介绍

Streamlit是一个用于构建数据科学界面的Python库,它使得创建交互式应用程序变得非常简单。

常用组件

Streamlit 提供了一系列常用组件,用于构建交互式应用程序。以下是常见的 Streamlit 组件:

  1. st.write(): 用于在应用程序中显示文本、数据框架、图表等内容。

  2. st.title(): 添加应用程序的标题。

  3. st.header()st.subheader(): 添加标题和子标题。

  4. st.text(): 显示纯文本。

  5. st.markdown(): 使用 Markdown 语法添加格式化文本。

  6. st.image(): 显示图像。

  7. st.pyplot(): 显示 Matplotlib 图表。

  8. st.altair_chart(): 显示 Altair 图表。

  9. st.dataframe(): 显示数据框。

  10. st.table(): 显示表格。

  11. st.selectbox(): 显示下拉框,用户可以从选项中进行选择。

  12. st.multiselect(): 显示多选框,用户可以从选项中进行多选。

  13. st.slider(): 显示滑块,用户可以调整数值。

  14. st.text_input(): 显示文本输入框,用户可以输入文本。

  15. st.number_input(): 显示数字输入框,用户可以输入数字。

  16. st.text_area(): 显示多行文本输入框。

  17. st.checkbox(): 显示复选框,用户可以勾选或取消勾选。

  18. st.radio(): 显示单选按钮,用户可以从选项中进行单选。

  19. st.button(): 显示按钮,用户可以点击执行相关操作。

  20. st.file_uploader(): 显示文件上传器,用户可以上传文件。

  21. st.date_input()st.time_input(): 显示日期和时间输入框。

  22. st.color_picker(): 显示颜色选择器,用户可以选择颜色。

  23. st.spinner(): 显示加载状态的旋转器。

这些组件可以帮助你构建出功能丰富的交互式应用程序,根据需要选择合适的组件来实现你的应用程序功能。

下面是一些Streamlit中常用的组件及其简要介绍:

  1. st.title(): 用于添加应用程序的标题。

    import streamlit as st
    st.title('My Streamlit App')
    
    • 1
    • 2
  2. st.write(): 可以将文本、数据框架、图表等内容写入应用程序。

    st.write('Hello, world!')
    
    • 1
  3. st.header()st.subheader(): 用于添加标题和子标题。

    st.header('This is a header')
    st.subheader('This is a subheader')
    
    • 1
    • 2
  4. st.text(): 显示纯文本。

    st.text('This is some text.')
    
    • 1
  5. st.markdown(): 可以使用Markdown语法添加格式化文本。

    st.markdown('**This** is some Markdown *text*.')
    
    • 1
  6. st.image(): 显示图像。

    from PIL import Image
    image = Image.open('example.jpg')
    st.image(image, caption='Sunset', use_column_width=True)
    
    • 1
    • 2
    • 3
  7. st.pyplot()st.altair_chart(): 显示Matplotlib和Altair图表。

    import matplotlib.pyplot as plt
    plt.plot([1, 2, 3])
    st.pyplot()
    
    import altair as alt
    chart = alt.Chart(data).mark_bar().encode(
        x='category',
        y='count'
    )
    st.altair_chart(chart, use_container_width=True)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
  8. st.dataframe(): 显示数据框。

    import pandas as pd
    df = pd.DataFrame({'Column 1': [1, 2, 3], 'Column 2': [4, 5, 6]})
    st.dataframe(df)
    
    • 1
    • 2
    • 3
  9. st.selectbox(): 显示下拉框,用户可以从选项中进行选择。

    option = st.selectbox('Choose an option', ['Option 1', 'Option 2', 'Option 3'])
    
    • 1
  10. st.slider(): 显示滑块,用户可以调整数值。

    value = st.slider('Select a value', 0, 100, 50)
    
    • 1
  11. st.button(): 显示按钮,用户可以点击执行相关操作。

    if st.button('Click me'):
        st.write('Button clicked!')
    
    • 1
    • 2

这些是Streamlit中常用的一些组件,可以帮助你构建出功能丰富的交互式数据科学应用程序。

如上常用组件,运行代码streamlit run streamlit_hello.py:

import numpy as np
import streamlit as st
import pandas as pd

st.title('My Streamlit App')

st.write('Hello, world!')

st.header('This is a header')
st.subheader('This is a subheader')

st.text('This is some text.')

st.markdown('**This** is some Markdown *text*.')

from PIL import Image

image = Image.open('../data/stream_demo/onetwo.jpeg')
st.image(image, caption='Sunset', use_column_width=True)

import matplotlib.pyplot as plt

plt.plot([1, 2, 3])
st.pyplot()

import altair as alt
chart_data = pd.DataFrame(np.random.randn(20, 3), columns=["a", "b", "c"])
chart = alt.Chart(chart_data).mark_bar().encode(
    x='category',
    y='count'
)
c = (
    alt.Chart(chart_data)
        .mark_circle()
        .encode(x="a", y="b", size="c", color="c", tooltip=["a", "b", "c"])
        )
st.altair_chart(c, use_container_width=True)


df = pd.DataFrame({'Column 1': [1, 2, 3], 'Column 2': [4, 5, 6]})
st.dataframe(df)

option = st.selectbox('Choose an option', ['Option 1', 'Option 2', 'Option 3'])

value = st.slider('Select a value', 0, 100, 50)

if st.button('Click me'):
    st.write('Button clicked!')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49

在这里插入图片描述
在这里插入图片描述

高级组件

在 Streamlit 中,除了 st.cache 之外,还有一些其他的缓存相关组件,如 st.cache_datast.cache_resource,它们分别用于缓存数据和资源,以下是它们的介绍:

  1. st.cache_data:

    • st.cache_data 用于缓存数据,通常用于将数据加载到内存中,并在应用程序的多个部分之间共享。这对于那些频繁访问的数据,例如配置文件、数据集等非常有用。
    • 使用方法与 st.cache 类似,你可以将需要缓存的数据加载函数与 @st.cache_data 装饰器一起使用。
    • st.cache 不同,st.cache_data 并不会保存函数的输入参数,它只会缓存函数的输出结果。因此,如果数据的加载方式不依赖于函数的输入参数,则可以使用 st.cache_data 来缓存数据。
  2. st.cache_resource:

    • st.cache_resource 用于缓存外部资源,例如文件、图像、音频等,通常用于减少重复的网络请求或文件读取操作。
    • 你可以使用 @st.cache_resource 装饰器来缓存资源加载函数,这样在多次访问同一资源时,Streamlit 将会从缓存中加载,而不是重新加载资源。
    • st.cachest.cache_data 类似,st.cache_resource 也可以接受参数,用于根据不同的参数值缓存不同的资源。

这些缓存组件提供了不同的功能,可以根据具体的需求选择合适的缓存方式。通过合理地使用缓存,可以显著提高 Streamlit 应用程序的性能和响应速度,同时减少资源消耗。

案例分享

搭建简单对话界面

import streamlit as st

if __name__ == '__main__':
    st.title('Chat with me :sunflower:')

    # 初始化history
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # 展示对话
    for msg in st.session_state.messages:
        with st.chat_message(msg['role']):
            st.markdown(msg["content"])

    # React to user input
    if prompt := st.chat_input("Say something"):
        # Display user message in chat message container
        with st.chat_message("user"):
            st.markdown(prompt)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

    response = f"Echo: {prompt}"
    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        st.markdown(response)
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

在这里插入图片描述

使用Qwen大模型对话

采用了Qwen大模型量化后的q2版本,具体参考代码,注释也比较全。

对话方式两种:

  • 普通输出
  • 流式输出

python库使用:

  • 基础库:os、sys、time
  • llama_cpp:加载大模型
  • dotenv:加载.env配置的环境变量

代码

import os
import sys
import time

import streamlit as st
from llama_cpp import Llama
from dotenv import load_dotenv, find_dotenv

BASE_DIR = os.path.dirname(__file__)
sys.path.append(BASE_DIR)

# 加载env环境中内容
_ = load_dotenv(find_dotenv())


def get_llm_model(
        prompt: str = None,
        model: str = None,
        temperature: float = 0.0,
        max_token: int = 2048,
        n_ctx: int = 512,
        stream: bool = False):
    """
    根据模型名称去加载模型,返回response数据
    :param stream:
    :param prompt:
    :param model:
    :param temperature:
    :param max_token:
    :param n_ctx:
    :return:
    """
    if model in ['Qwen_q2']:
        model_path = os.environ[model]
        llm = Llama(model_path=model_path, n_ctx=n_ctx)
        start = time.time()
        response = llm.create_chat_completion(
            messages=[
                {
                    "role": "system",
                    "content": "你是一个智能超级助手,请用专业的词语回答问题,整体上下文带有逻辑性,如果不知道,请不要乱说",
                },
                {
                    "role": "user",
                    "content": "{}".format(prompt)
                },
            ],
            temperature=temperature,
            max_tokens=max_token,
            stream=stream
        )
        cost = time.time() - start
        print(f"模型生成时间:{cost}")
        print(f"大模型回复:\n{response}")
        if not stream:
            return response['choices'][0]['message']['content']
        else:
            return response


def get_llm_model_with_stream(
        prompt: str = None,
        model: str = None,
        temperature: float = 0.0,
        max_token: int = 2048,
        n_ctx: int = 512,
        stream: bool = True):
    """
    流式输出结果
    :param prompt:
    :param model:
    :param temperature:
    :param max_token:
    :param n_ctx:
    :param stream:
    :return:
    """
    response = ""
    start_time = time.time()
    stream_results = get_llm_model(prompt, model, temperature, max_token, n_ctx, stream)
    for res in stream_results:
        content = res["choices"][0].get("delta", {}).get("content", "")
        response += content
        yield content
    cost_time = time.time() - start_time
    print(f"cost_time: {cost_time}, response: {response}")


if __name__ == '__main__':
    st.title('Chat with Qwen :sunflower:')

    # 初始化history
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # 展示对话
    for msg in st.session_state.messages:
        with st.chat_message(msg['role']):
            st.markdown(msg["content"])

    # React to user input
    if prompt := st.chat_input("Say something"):
        # Display user message in chat message container
        with st.chat_message("user"):
            st.markdown(prompt)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

    # 普通方式输出
    # if prompt is not None:
    #     response = get_llm_model(prompt=prompt, model="Qwen_q2")
    #     # Display assistant response in chat message container
    #     with st.chat_message("assistant"):
    #         st.markdown(response)
    #     # Add assistant response to chat history
    #     st.session_state.messages.append({"role": "assistant", "content": response})

    # 流式输出
    if prompt is not None:
        stream_res = get_llm_model_with_stream(prompt=prompt, model="Qwen_q2")
        with st.chat_message("assistant"):
            content = st.write_stream(stream_res)
        print("流式输出:", content)
        st.session_state.messages.append({"role": "assistant", "content": content})


# streamlit run chat_with_qwen.py

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128

结果展示

在这里插入图片描述
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/1004350
推荐阅读
相关标签
  

闽ICP备14008679号