Python深入学习之《Fluent Python》 Part 1
从上个周末开始看这本《流畅的蟒蛇》,技术是慢慢积累的,Python也是慢慢才能写得优雅(pythonic)的。
数据模型
python纸牌
- import collections
-
- # 用来构建一个只有属性,没有方法的简单类,来代表扑克牌的号码和花色。
- Card = collections.namedtuple('Card', ['rank', 'suit'])
-
- class FrenchDeck:
- # 扑克牌的号码
- ranks = [str(n) for n in range(2,11) + list('JQKA')]
- # 扑克牌的花色,分别是黑桃,方块,梅花,红桃
- suits = 'spades diamonds clubs hearts'.split()
-
- def __init__(self):
- # 单下划线表示私有变量,不希望被外界更改
- self._cards = [Card(rank, suit) for suit in self.suits for rank in self.ranks]
-
- def __len__(self):
- return len(self._cards)
-
- def __getitem__(self, item):
- return self._cards[item]
重点在于其中的__len__方法和__getitem__方法,这是系统方法的重载,python这样可以增加灵活性。
需要指出的是遍历操作并不总是显式的。如果一个集合没有实现 contains 方法,则 in 操作就会进行顺序遍历操作。
其中用到了namedtuple简单记录下:
namedtuple
我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:
>>> p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
定义一个class又小题大做了,这时,namedtuple就派上了用场:
- >>> from collections import namedtuple
- >>> Point = namedtuple('Point', ['x', 'y'])
- >>> p = Point(1, 2)
- >>> p.x
- 1
- >>> p.y
- 2
namedtuple是一个函数,它用来创建一个自定义的tuple对象,并且规定了tuple元素的个数,并可以用属性而不是索引来引用tuple的某个元素。
这样一来,我们用namedtuple可以很方便地定义一种数据类型,它具备tuple的不变性,又可以根据属性来引用,使用十分方便。
可以验证创建的Point对象是tuple的一种子类:
- >>> isinstance(p, Point)
- True
- >>> isinstance(p, tuple)
- True
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
- # namedtuple('名称', [属性list]):
- Circle = namedtuple('Circle', ['x', 'y', 'r'])
From 廖雪峰的官方网站
顺便贴上其他的collections模块内的类备忘:
deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
- >>> from collections import deque
- >>> q = deque(['a', 'b', 'c'])
- >>> q.append('x')
- >>> q.appendleft('y')
- >>> q
- deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
defaultdict
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
- >>> from collections import defaultdict
- >>> dd = defaultdict(lambda: 'N/A')
- >>> dd['key1'] = 'abc'
- >>> dd['key1'] # key1存在
- 'abc'
- >>> dd['key2'] # key2不存在,返回默认值
- 'N/A'
注意默认值是调用函数返回的,而函数在创建defaultdict对象时传入。
除了在Key不存在时返回默认值,defaultdict的其他行为跟dict是完全一样的。
OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
- >>> from collections import OrderedDict
- >>> d = dict([('a', 1), ('b', 2), ('c', 3)])
- >>> d # dict的Key是无序的
- {'a': 1, 'c': 3, 'b': 2}
- >>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
- >>> od # OrderedDict的Key是有序的
- OrderedDict([('a', 1), ('b', 2), ('c', 3)])
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:
- >>> od = OrderedDict()
- >>> od['z'] = 1
- >>> od['y'] = 2
- >>> od['x'] = 3
- >>> list(od.keys()) # 按照插入的Key的顺序返回
- ['z', 'y', 'x']
OrderedDict可以实现一个FIFO(先进先出)的dict,当容量超出限制时,先删除最早添加的Key:
- from collections import OrderedDict
-
- class LastUpdatedOrderedDict(OrderedDict):
-
- def __init__(self, capacity):
- super(LastUpdatedOrderedDict, self).__init__()
- self._capacity = capacity
-
- def __setitem__(self, key, value):
- containsKey = 1 if key in self else 0
- if len(self) - containsKey >= self._capacity:
- last = self.popitem(last=False)
- print('remove:', last)
- if containsKey:
- del self[key]
- print('set:', (key, value))
- else:
- print('add:', (key, value))
- OrderedDict.__setitem__(self, key, value)
Counter
Counter是一个简单的计数器,例如,统计字符出现的个数:
- >>> from collections import Counter
- >>> c = Counter()
- >>> for ch in 'programming':
- ... c[ch] = c[ch] + 1
- ...
- >>> c
- Counter({'g': 2, 'm': 2, 'r': 2, 'a': 1, 'i': 1, 'o': 1, 'n': 1, 'p': 1})
Counter实际上也是dict的一个子类,上面的结果可以看出,字符'g'、'm'、'r'各出现了两次,其他字符各出现了一次。
数学类型
基本的矢量操作包括,矢量相加,矢量求模,矢量和标量相乘等等。然而我们希望用我们习惯的内置操作 + abs *来进行这些运算,所以需要我们自定义的数据模型实现一些特殊方法。
- from math import hypot
- class Vector:
- def __init__(self, x=0, y=0):
- self.x = x
- self.y = y
- def __repr__(self):
- return 'Vector(%r, %r)' % (self.x, self.y)
- def __abs__(self):
- return hypot(self.x, self.y)
- def __bool__(self):
- return bool(abs(self))
- def __add__(self, other):
- x = self.x + other.x
- y = self.y + other.y
- return Vector(x, y)
- def __mul__(self, scalar):
- return Vector(self.x * scalar, self.y * scalar)
实现了这些特殊方法后,就可以直接使用运算符对我们的数据模型进行操作了。
example:
- v1 = Vector(2,4)
- v2 = Vector(2,1)
- v1 + v2 # Vector(4,5)
- v = Vector(3,4)
- abs(v) # 5.0
- v * 3 # Vector(9, 12)
- abs(v * 3) # 15.0
值得指出的是 repr 方法,如果不实现这个方法的话。直接打印一个 Vector 对象可能会输出
<Vector object at 0x10e100070>.
而定义了这个方法后,输出就变得相当易读
Vector(3,4)
当然,还可以定义 str 来自定义str(x)的行为。如果只想实现一个函数的话,建议实现 repr 函数,因为当没有 str,会调用__repr__作为备用。