当前位置:   article > 正文

机器学习入门(一):机器学习三要素之数据、模型、算法

机器学习的三要素:数据、模型和算法

机器学习三要素包括数据、模型、算法。简单来说,这三要素之间的关系,可以用下面这幅图来表示:


v2-97d80f628ad93af2f54a32d9e33b4526_b.jpg


总结成一句话:算法通过在数据上进行运算产生模型

下面我们先分别来看三个要素。

数据

关于数据,其实我们之前已经给出了例子。

源数据

上一篇中,图1老鼠和其他动物图2小马宝莉六女主就是现实中的两份样本集合。如果我们要训练“老鼠分类器”,或者做“小马种族聚类” 分析的话,它们就是原始数据(Raw Data)。

不过,我们之前也说了,计算机能够处理的是数值,而不是图片或者文字。

向量空间模型和无标注数据

那么,我们就需要构建一个向量空间模型(Vector Space Model,VSM)。VSM 负责将格式(文字、图片、音频、视频)转化为一个个向量。

然后开发者把这些转换成的向量输入给机器学习程序,数据才能够得到处理。

比如图2小马宝莉中的6为女主角,我们要给她们做聚类,而且已经知道了,要用她们的两个特征来做聚类,这两个特征就是:独角和翅膀。

那么我们就可以定义一个二维的向量 A=[a_1,a_2]a_1 表示是否有独角,有则 a_1 = 1, 否则 a_1 = 0。而 a_2 表示是否有翅膀。

那么按照这个定义,我们的6匹小马最终就会被转化为下面6个向量:

这样,计算机就可以对数据 X_1,……,X_6 进行处理了。这6个向量也就叫做这份数据的特征向量(Feature Vector)

这是无标注数据

有标注数据

和无标注对应的是有标注。

数据标注简单

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/206010
推荐阅读
相关标签
  

闽ICP备14008679号