赞
踩
推导式(解析式)
推导式comprehensions(又称解析式),是Python的一种独有特性。
推导式是可以从一个数据序列构建另一个新的数据序列的结构体。 共有三种推导,在Python2和3中都有支持:
列表(list)推导式
字典(dict)推导式
集合(set)推导式
range() 函数
python的 range() 函数可用来创建一个整数列表,一般用在 for 循环中.
range()语法:
range(start, stop[, step])
start: 计数从start开始,默认是从0开始(闭区间),如:range(5)等价于range(0,5).
stop: 计数到stop结束,但不包括stop(开区间).如:range(0,5)是[0, 1, 2, 3, 4],不包含5.
step: 步长,相邻两个值的差值,默认为1.如:range(0,5)相当于range(0, 5, 1).
列表推导式是通过一个可迭代对象来生成列表的, range()可以说是列表推导式中最常用的可迭代对象了.对列表推导式来说, range() 是其中的精髓之一.
列表推导式
基本格式为:
[表达式 for 变量 in 列表] 或者 [表达式 for 变量 in 列表 if 条件]
具体可分为两种:
[x for x in data if condition]
此处if主要起条件判断作用,data数据中只有满足if条件的才会被留下,最后统一生成为一个数据列表。
[exp1 if condition else exp2 for x in data]
此处if...else主要起赋值作用,当data中的数据满足if条件时将其做exp1处理,否则按照exp2处理,最后统一生成为一个数据列表。
例1:过滤掉长度小于或等于3的字符串列表,并将剩下的转换成大写字母:
>>> names = ['Bob','Tom','alice','Jerry','Wendy','Smith']
>>> new_names = [name.upper()for name in names if len(name)>3]
>>> print(new_names)
['ALICE', 'JERRY', 'WENDY', 'SMITH']
例2:生成间隔5分钟的时间列表序列:
>>> time = ['%.2d:%.2d'%(h,m )for h in range(24) for m in range(0,60,5) ]
>>> print(time)
['00:00', '00:05', '00:10', '00:15', '00:20', '00:25', '00:30', '00:35', '00:40', '00:45', '00:50', '00:55', '01:00', '01:05', '01:10', '01:15', '01:20', '01:25', '01:30', '01:35', '01:40', '01:45', '01:50', '01:55', '02:00', '02:05', '02:10', '02:15', '02:20', '02:25', '02:30', '02:35', '02:40', '02:45', '02:50', '02:55', '03:00', '03:05', '03:10', '03:15', '03:20', '03:25', '03:30', '03:35', '03:40', '03:45', '03:50', '03:55', '04:00', '04:05', '04:10', '04:15', '04:20', '04:25', '04:30', '04:35', '04:40', '04:45', '04:50', '04:55', '05:00', '05:05', '05:10', '05:15', '05:20', '05:25', '05:30', '05:35', '05:40', '05:45', '05:50', '05:55', '06:00', '06:05', '06:10', '06:15', '06:20', '06:25', '06:30', '06:35', '06:40', '06:45', '06:50', '06:55', '07:00', '07:05', '07:10', '07:15', '07:20', '07:25', '07:30', '07:35', '07:40', '07:45', '07:50', '07:55', '08:00', '08:05', '08:10', '08:15', '08:20', '08:25', '08:30', '08:35', '08:40', '08:45', '08:50', '08:55', '09:00', '09:05', '09:10', '09:15', '09:20', '09:25', '09:30', '09:35', '09:40', '09:45', '09:50', '09:55', '10:00', '10:05', '10:10', '10:15', '10:20', '10:25', '10:30', '10:35', '10:40', '10:45', '10:50', '10:55', '11:00', '11:05', '11:10', '11:15', '11:20', '11:25', '11:30', '11:35', '11:40', '11:45', '11:50', '11:55', '12:00', '12:05', '12:10', '12:15', '12:20', '12:25', '12:30', '12:35', '12:40', '12:45', '12:50', '12:55', '13:00', '13:05', '13:10', '13:15', '13:20', '13:25', '13:30', '13:35', '13:40', '13:45', '13:50', '13:55', '14:00', '14:05', '14:10', '14:15', '14:20', '14:25', '14:30', '14:35', '14:40', '14:45', '14:50', '14:55', '15:00', '15:05', '15:10', '15:15', '15:20', '15:25', '15:30', '15:35', '15:40', '15:45', '15:50', '15:55', '16:00', '16:05', '16:10', '16:15', '16:20', '16:25', '16:30', '16:35', '16:40', '16:45', '16:50', '16:55', '17:00', '17:05', '17:10', '17:15', '17:20', '17:25', '17:30', '17:35', '17:40', '17:45', '17:50', '17:55', '18:00', '18:05', '18:10', '18:15', '18:20', '18:25', '18:30', '18:35', '18:40', '18:45', '18:50', '18:55', '19:00', '19:05', '19:10', '19:15', '19:20', '19:25', '19:30', '19:35', '19:40', '19:45', '19:50', '19:55', '20:00', '20:05', '20:10', '20:15', '20:20', '20:25', '20:30', '20:35', '20:40', '20:45', '20:50', '20:55', '21:00', '21:05', '21:10', '21:15', '21:20', '21:25', '21:30', '21:35', '21:40', '21:45', '21:50', '21:55', '22:00', '22:05', '22:10', '22:15', '22:20', '22:25', '22:30', '22:35', '22:40', '22:45', '22:50', '22:55', '23:00', '23:05', '23:10', '23:15', '23:20', '23:25', '23:30', '23:35', '23:40', '23:45', '23:50', '23:55']
例3: 求(x,y),其中x是0-5之间的偶数,y是0-5之间的奇数组成的元祖列表:
>>>list = [(x,y) for x in range(5) if x%2 == 0 for y in range(5) if y%2 == 1]
>>>print(list)
[(0, 1), (0, 3), (2, 1), (2, 3), (4, 1), (4, 3)]
例4: 求M中斜线1,5,9组成的列表:
>>>M = [[1,2,3],[4,5,6],[7,8,9]]
>>>list_1 = [M[x][x] for x in range(len(M)) ]
>>>print(list_1)
[1, 5, 9]
注意:
使用()生成generator:
将俩表推导式的[]改成()即可得到生成器。
multiples = (i for i in range(30) if i % 3 is 0)
print(type(multiples))
Output:
字典推导式
基本格式为:
{ key:value for key, value in existing_data_structure }
这里和list有所不同,因位dict里面有两个关键的属性,key 和 value,但大同小异,我们现在的expression部分可以同时对 key 和 value 进行操作 :
例1: 用字典推导式配合枚举的使用案例:
>>> strings = ['import','is','with','if','file','exception','shim','lucy']
>>> dict = {k:v for v,k in enumerate(strings)}
>>> print(dict)
{'import': 0, 'is': 1, 'with': 2, 'if': 3, 'file': 4, 'exception': 5, 'shim': 6, 'lucy': 7}
上题的k是字符串,v是序列。如果我们更换k v:
>>> strings = ['import','is','with','if','file','exception','shim','lucy']
>>> dict = {k:v for k,v in enumerate(strings)}
>>> print(dict)
{0: 'import', 1: 'is', 2: 'with', 3: 'if', 4: 'file', 5: 'exception', 6: 'shim', 7: 'lucy'}
例2:源数据的key是字母的大小写混在一起,我们想统计同一个字母(不论大小写)的key所对应的键值对的和:
nums = {'a':10,'b':20,'A':5,'B':3,'d':4}
num_frequency = {k.lower():nums.get(k.lower(),0) + nums.get(k.upper(),0)
for k in nums.keys() }
#nums是字典,nums.get(k.lower(),0)的意思是在字典nums中查找小写Key
#找到了返回KEY对应的Value,否则返回参数0,nums.get(k.upper(),0)同上
print(num_frequency)
{'a': 15, 'b': 23, 'd': 4}
集合推导式
基础格式为:
{ expression for item in Sequence if conditional }
其实集合推导式和list的推导式很像,但是既然是集合,肯定会配合利用Set的特有属性来实现我们的目的。
例1:首先,我们来看一个根据Set值唯一的特性的例子,我们有一个list叫names,用来存储名字,其中的数据很不规范,有大写,小写,还有重复的,我们想要去重并把名字的格式统一为首字母大写,实现方法便是用Set推导式:
>>> names = [ 'Bob', 'JOHN', 'alice', 'bob', 'ALICE', 'James', 'Bob','JAMES','jAMeS' ]
>>> new_names = {n[0].upper() + n[1:].lower() for n in names}
>>> print(new_names)
{'Bob', 'James', 'John', 'Alice'}
拓展阅读
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。