当前位置:   article > 正文

装饰器

函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数
装饰器

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

>>> def now(): ... print('2015-3-25') ... >>> f = now >>> f() 2015-3-25 

函数对象有一个__name__属性,可以拿到函数的名字:

  1. >>> now.__name__
  2. 'now'
  3. >>> f.__name__
  4. 'now'

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

  1. def log(func):
  2. def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

  1. @log
  2. def now(): print('2015-3-25')

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

  1. >>> now()
  2. call now():
  3. 2015-3-25

@log放到now()函数的定义处,相当于执行了语句:

now = log(now)

由于log()是一个decorator,返回一个函数,所以,原来的now()函数仍然存在,只是现在同名的now变量指向了新的函数,于是调用now()将执行新函数,即在log()函数中返回的wrapper()函数。

wrapper()函数的参数定义是(*args, **kw),因此,wrapper()函数可以接受任意参数的调用。在wrapper()函数内,首先打印日志,再紧接着调用原始函数。

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

  1. def log(text):
  2. def decorator(func): def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator

这个3层嵌套的decorator用法如下:

  1. @log('execute')
  2. def now(): print('2015-3-25')

执行结果如下:

  1. >>> now()
  2. execute now():
  3. 2015-3-25

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

>>> now = log('execute')(now)

我们来剖析上面的语句,首先执行log('execute'),返回的是decorator函数,再调用返回的函数,参数是now函数,返回值最终是wrapper函数。

以上两种decorator的定义都没有问题,但还差最后一步。因为我们讲了函数也是对象,它有__name__等属性,但你去看经过decorator装饰之后的函数,它们的__name__已经从原来的'now'变成了'wrapper'

  1. >>> now.__name__
  2. 'wrapper'

因为返回的那个wrapper()函数名字就是'wrapper',所以,需要把原始函数的__name__等属性复制到wrapper()函数中,否则,有些依赖函数签名的代码执行就会出错。

不需要编写wrapper.__name__ = func.__name__这样的代码,Python内置的functools.wraps就是干这个事的,所以,一个完整的decorator的写法如下:

  1. import functools
  2. def log(func): @functools.wraps(func) def wrapper(*args, **kw): print('call %s():' % func.__name__) return func(*args, **kw) return wrapper

或者针对带参数的decorator:

  1. import functools
  2. def log(text): def decorator(func): @functools.wraps(func) def wrapper(*args, **kw): print('%s %s():' % (text, func.__name__)) return func(*args, **kw) return wrapper return decorator

import functools是导入functools模块。模块的概念稍候讲解。现在,只需记住在定义wrapper()的前面加上@functools.wraps(func)即可。

转载于:https://www.cnblogs.com/LewisAAA/p/9271290.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/213271
推荐阅读
相关标签
  

闽ICP备14008679号