当前位置:   article > 正文

set python比较随机_随机林的实现及参数整定R与python的比较——以泰坦尼克号幸存者数据为例,森林,及调,Python,对比...

set python比较随机_随机林的实现及参数整定R与python的比较——以泰坦尼克号幸存者数据为例,森林,及调,Python,对比...

决策树R&Python调参对比

一、R语言

方法一、手动调参

PS.仅使用常规包:randomForest和循环编写。

1-建模

set.seed(6)

rf

y_pred

A

acc

未做任何处理时模型精度达到0.8345865。(甚至超过决策树python调参后的结果)

2-1调参——特征数

err

for(i in 1:(ncol(train)-1)){

set.seed(6)

mtry_n

err

}

print(err)

mtry

2-2调参——树的个数

set.seed(6)

ntree_fit

ntree=400)

plot(ntree_fit)

set.seed(0219)

fold

right

for (i in 40:100){

accuracy

for(j in 1:10){

fold_test

fold_train

set.seed(1234)

fold_fit

ntree=i)

fold_pred

confumat

acc

accuracy = append(accuracy,acc)

}

right

}

print(max(right))

print(which.max(right)+40)

本段结合交叉验证的随机森林树个数的调参为博主自行编写,若有问题请私信讨论,转摘请注明出处,谢谢!

3-最优模型预测

set.seed(6)

rf_best

pred

A

acc

特征数和基分类器的个数调整后模型精度达到0.8609023!!!比未调整结果提高约2.5%!!!

方法二、网格调参

PS.使用强大的caret包和trainControl、tunegrid函数。

但随机森林网格调参只有一个参数mtry,且为随机调整.

library(caret)

metric = "Accuracy"

control

set.seed(6)

rf_carte

metric = "Accuracy", trControl = control,

search = "random")

modelLookup(model = "rf")

rf_carte

y

#,type = "prob"

)

A

acc

特征数减少,模型泛化效果变差,此时模型误差上升,出现过拟合。

PS.若小伙伴有关于随机森林网格调参更好的办法或更多关于caret包的资料,欢迎一起学习讨论!

二、python

0-导入所需库(决策树调参已导入的不再导入)

from sklearn.ensemble import RandomForestClassifier

1-建模

rf = RandomForestClassifier(n_estimators=100,random_state=19)

rf.cv = cross_val_score(rf,x,y,cv=10).mean()

print(rf.cv)

rf0 = rf.fit(xtrain,ytrain)

score = rf0.score(xtest,ytest)

print(score)

2-调参

2-1 n_estimators

best_ntree = []

for i in range(1,201,10):

rf = RandomForestClassifier(n_estimators=i,

n_jobs=-1,

random_state = 19)

score = cross_val_score(rf,x,y,cv=10).mean()

best_ntree.append(score)

print(max(best_ntree),np.argmax(best_ntree)*10)

plt.figure()

plt.plot(range(1,201,10),best_ntree)

plt.show()

4a86be5c48f14843f2647d647d576f85.png

# 缩短区间查看:

ntree = []

for i in range(30,60):

rf = RandomForestClassifier(n_estimators=i

,random_state=19

,n_jobs=-1)

score = cross_val_score(rf,x,y,cv=10).mean()

ntree.append(score)

print(max(ntree),np.argmax(ntree)+30) # ntree = 55

plt.plot(range(30,60),ntree)

plt.show()

a6441e40abc41e9f818fd049c43ea5a9.png

6-调参(2)max_depth

from sklearn.model_selection import GridSearchCV

param_grid = {'max_depth':[*range(1, 9)]} # 设置参数

rf = RandomForestClassifier(n_estimators=55

,random_state=19

)

GS = GridSearchCV(rf,param_grid,cv=10)

GS.fit(x,y)

GS.best_score_ # 0.8335208098987626

GS.best_params_ # max_depth=8

6-调参(3)max_features

param_grid = {'max_features':[*range(1,4)]}

rf = RandomForestClassifier(n_estimators=55

,random_state=19

,max_depth=8

)

GS = GridSearchCV(rf,param_grid,cv=10)

GS.fit(x,y)

GS.best_score_ # 0.8335208098987626

GS.best_params_ # max_features=3

6-调参(4)min_samples_leaf,min_samples_split

param_grid = {'min_samples_leaf':[*range(1,11)],'min_samples_split':[*range(2,22)]}

rf = RandomForestClassifier(n_estimators=55

,random_state=19

,max_depth=8

,max_features=3

)

GS = GridSearchCV(rf,param_grid,cv=10)

GS.fit(x,y)

GS.best_score_ # 0.8368953880764904

GS.best_params_ # min_samples_leaf=1,min_samples_split=4

本人也试了所有参数整体调参,但费时很长,有兴趣的小伙伴可以试试。

# 整体调参

param_grid = {'max_depth':[*range(1,9)],'max_features':[*range(1,9)]

,'min_samples_leaf':[*range(1,11)],'min_samples_split':[*range(2,22)]}

rf = RandomForestClassifier(n_estimators=55

,random_state=19

)

GS = GridSearchCV(rf,param_grid,cv=10)

GS.fit(x,y)

GS.best_score_ # 0.8402699662542182

综上,此时单独调参的训练结果得到的最优模型交叉验证的准确率约为0.8369;

整体调参可达到约0.8403。

R网格调参结果约为:0.8346;

R手动调参结果约为:0.8609,R手动调参结果最优,而网格调参可调整的参数有限仅能达到0.8346低于python网格调参,python的sklearn库调参可操作空间大。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/237096
推荐阅读
相关标签
  

闽ICP备14008679号