当前位置:   article > 正文

数据库管理-第159期 Oracle Vector DB & AI-10(20240311)

数据库管理-第159期 Oracle Vector DB & AI-10(20240311)

数据库管理-第159期 Oracle Vector DB & AI-10(20240311)

作者:胖头鱼的鱼缸(尹海文)
Oracle ACE Associate: Database(Oracle与MySQL)
国内某科技公司 DBA总监
10年数据库行业经验,现主要从事数据库服务工作
拥有OCM 11g/12c/19c、MySQL 8.0 OCP、Exadata、CDP等认证
墨天轮MVP、认证技术专家、年度墨力之星,ITPUB认证专家,OCM讲师
圈内拥有“总监”、“保安”、“国产数据库最大敌人”等称号,非著名社恐(社交恐怖分子)
公众号:胖头鱼的鱼缸;CSDN:胖头鱼的鱼缸(尹海文);墨天轮:胖头鱼的鱼缸;ITPUB:yhw1809。
除授权转载并标明出处外,均为“非法”抄袭。

写了些其他的东西,又休息了几天,今天继续。
在前面我演示了vector_distance()的默认算法方式,即Euclidean Squared(欧几里得平方)。本期我将演示其他的distance函数。

1 其他distance函数

在Oracle AI Vector Search中还有其他几种类型的distance函数:

  • Cosine Similarity(余弦相似度)
  • Dot Product(点积)
  • Manhattan Distance(曼哈顿距离)
  • Hamming Distance(汉明距离)

在vector_distance()函数中,默认为EUCLIDEAN,指定其他distance函数则使用一下方法:

  • vector_distance(v1, v2, EUCLIDEAN);
  • vector_distance(v1, v2, COSINE);
  • vector_distance(v1, v2, DOT);
  • vector_distance(v1, v2, MANHATTAN);
  • vector_distance(v1, v2, HAMMING);

2 实例演示

本节内容仍使用上一期的VT2表,使用向量点(16,4)进行演示,不同的函数结果略有不同:

使用其他函数寻找最近向量点

Cosine Similarity
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, COSINE)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Euclidean Similarity
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, EUCLIDEAN)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

Dot Product
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[16, 4]'), v, DOT)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

Manhattan
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance(vector('[16, 4]'), v, MANHATTAN)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

Hamming
我们不关心实际距离,而是关心距离最小的行的ID。还要注意的是,搜索的结果与我们之前使用其他函数看到的结果不同

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector_distance( vector('[16, 4]'), v, HAMMING)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

函数变体

distance函数还有一些其他的变体写法:

  • L1_DISTANCE(v1, v2) = MANHATTAN distance
  • L2_DISTANCE(v1, v2) = EUCLIDEAN distance
  • COSINE_DISTANCE(v1, v2) = COSINE similarity
  • INNER_PRODUCT(v1, v2) = DOT product

L1_DISTANCE
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY L1_DISTANCE(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

L2_DISTANCE
我们不关心实际距离,而是关心距离最小的行的ID

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY L2_DISTANCE(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

COSINE_DISTANCE

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY COSINE_DISTANCE( vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

INNER_PRODUCT

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY INNER_PRODUCT(vector('[16, 4]'), v)
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

简写语法

distance函数还有一些简写写法:

  • v1 <-> v2 = Euclidean distance
  • v1 <=> v2 = Cosine similarity
  • v1 <#> v2 = Negative dot product

v1 <-> v2

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <-> v
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

**v1 <=> v2 **

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <=> v 
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

v1 <#> v2

SELECT id, vsize, shape, color
FROM   vt2
ORDER  BY vector('[16, 4]') <#> v 
FETCH FIRST 4 ROWS ONLY;
  • 1
  • 2
  • 3
  • 4

image.png

总结

本期针对不同写法的不同distance函数。
本系列内容预计还有2-4篇,分别为其他vector函数,一个相对复杂的demo演示以及与PGVector的对比。
老规矩,知道写了些啥。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/246193
推荐阅读
相关标签
  

闽ICP备14008679号