赞
踩
我们要想用深度学习去训练我们的神经网络模型,首先,我们要告诉我们的电脑,我们的每一张图片,分别代表什么,对于这种问题,我们通过制作一个txt文档去解决,好,那我们现在就去构建一下我们txt文件,具体代码如下:
import os import copy def write_txt(path,txt_path): num =len(os.listdir(path)) file_path = txt_path file = open (file_path, 'w') Y = 0 c = os.listdir(path) for category in c: C = c.index(category) for imgs in os.listdir(os.path.join(path,category)): file.write(category+'/'+imgs+'|'+ str(Y)+ '\n') Y = Y+1 return if __name__ == "__main__": write_txt('C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/validation/', 'C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/7.txt')
上述代码是非常简单的,我们只需要提供根目录,就能够获得我们根目录下的分类文件夹,进而对我们的分类文件夹进行自动编号,然后获得文件夹下的图片名,我们将两者之间用“|”符号进行标记,以方便我们在后续进行按标识分割。
我们在进行训练我们的数据集时,有两点问题需要解决,一是解决数据的读取问题,一是解决模型搭建问题。下面我们先来解决一下数据读取问题,这需要我们定义自己的Data类。代码如下:
class MyData(torch.utils.data.Dataset): def __init__(self, root, datatxt, transform=None, target_transform=None): super(MyData, self).__init__() file_txt = open(datatxt,'r') imgs = [] for line in file_txt: line = line.rstrip() words = line.split('|') imgs.append((words[0], words[1])) self.imgs = imgs self.root = root self.transform = transform self.target_transform = target_transform def __getitem__(self, index): random.shuffle(self.imgs) name, label = self.imgs[index] img = Image.open(self.root + name).convert('RGB') if self.transform is not None: img = self.transform(img) label = int(label) #label_tensor = torch.Tensor([0,0]) #label_tensor[label]=1 return img, label def __len__(self): return len(self.imgs)
再去定义我们的模型
lass Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3) self.pool = nn.MaxPool2d((2, 2)) self.pool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(16, 32, 3) self.fc1 = nn.Linear(36*36*32, 120) self.fc2 = nn.Linear(120, 60) self.fc3 = nn.Linear(60, 2) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool1(F.relu(self.conv2(x))) x = x.view(-1, 36*36*32) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x
下面进行完整的训练代码展示:
import torch import random from PIL import Image import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.optim as optim device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(device) class MyData(torch.utils.data.Dataset): def __init__(self, root, datatxt, transform=None, target_transform=None): super(MyData, self).__init__() file_txt = open(datatxt,'r') imgs = [] for line in file_txt: line = line.rstrip() words = line.split('|') imgs.append((words[0], words[1])) self.imgs = imgs self.root = root self.transform = transform self.target_transform = target_transform def __getitem__(self, index): random.shuffle(self.imgs) name, label = self.imgs[index] img = Image.open(self.root + name).convert('RGB') if self.transform is not None: img = self.transform(img) label = int(label) #label_tensor = torch.Tensor([0,0]) #label_tensor[label]=1 return img, label def __len__(self): return len(self.imgs) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3) self.pool = nn.MaxPool2d((2, 2)) self.pool1 = nn.MaxPool2d((2, 2)) self.conv2 = nn.Conv2d(16, 32, 3) self.fc1 = nn.Linear(36*36*32, 120) self.fc2 = nn.Linear(120, 60) self.fc3 = nn.Linear(60, 2) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool1(F.relu(self.conv2(x))) x = x.view(-1, 36*36*32) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x classes = ['猫','狗'] transform = transforms.Compose( [transforms.Resize((152, 152)),transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_data=MyData(root ='C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/train/', datatxt='C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/'+'6.txt', transform=transform) test_data=MyData(root ='C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/validation/', datatxt='C:/Users/Elegantmadman/Desktop/data/cats_and_dogs_filtered/'+'7.txt', transform=transform) train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=4, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_data, batch_size=4) def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() dataiter = iter(train_loader) images, labels = dataiter.next() imshow(torchvision.utils.make_grid(images)) print(labels) net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) for epoch in range(2): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) #print(outputs) #print(labels) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 200 == 0: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 200)) running_loss = 0.0 print('Finished Training') PATH = 'C:/Users/Elegantmadman/Desktop//cifar_net.pth' torch.save(net.state_dict(), PATH) dataiter = iter(test_loader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) outputs = net(images) _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
下面我们将我们的模型应用和测试
net = Net() net.load_state_dict(torch.load(PATH)) outputs = net(images) correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total))
好的,至此我们就完成了所有的工作。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。