当前位置:   article > 正文

【pytorch】从零开始用语义分割网络(deeplab3+)训练自己的数据集_deeplabv3+训练自己的数据集

deeplabv3+训练自己的数据集

参考文档:
https://blog.csdn.net/qq_43631789/article/details/102700231
https://blog.csdn.net/qq_39056987/article/details/106455828
https://blog.csdn.net/qq_36766560/article/details/110009622
https://blog.csdn.net/gsgs1234/article/details/115267777

1. 制作自己数据集(labelme)

使用labelme对自己采集的图像进行标注。
安装和使用过程略。
在这里插入图片描述
然后标注的json文件默认保存在图像所在的目录内。标注完成之后一般是这样的:
在这里插入图片描述

2. 下载deeplab3+源码包(pytorch)

github地址:
https://github.com/jfzhang95/pytorch-deeplab-xception
下载代码包至自己的指定位置:
在这里插入图片描述

3. 将数据集转换为VOC格式

3.1 数据结构介绍

我们首先新建一些列文件夹,文件结构如下:

- ImageSets
	- Segmentation
		- train.txt
		-train.txt
		- val.txt
- JPEGImages
- SegmentationClass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

ImageSets目录内单放一个Segmentation文件夹,然后Segmentation目录下需要制作3个txt文件:train.txt,train.txt,val.txt 用来表示训练集,验证集,测试集的划分信息。制作方式后面介绍。

JPEGImages 目录内用于存放图像数据集的原图。

在这里插入图片描述
SegmentationClass 目录放置的mask图像,mask是原图根据标注信息json文件生成的,生成方式后面介绍,注意mask的图像与原图的名称一一对应。

在这里插入图片描述

3.2 生成3个txt文件

txt的格式是每一行一个图像文件名,无后缀,不需要地址。
在这里插入图片描述
train,trainval,val自己按照一定比例划分
代码如下:

import os
import numpy as np
root = r"D:\dataset\belt\JPEGImages"
output = r"D:\dataset\belt\ImageSets\Segmentation"
filename = []
#从存放原图的目录中遍历所有图像文件
# dirs = os.listdir(root)
for root, dir, files in os.walk(root):
    for file in files:
        print(file)
        filename.append(file[:-4])  # 去除后缀,存储


#打乱文件名列表
np.random.shuffle(filename)
#划分训练集、测试集,默认比例6:2:2
train = filename[:int(len(filename)*0.6)]
trainval = filename[int(len(filename)*0.6):int(len(filename)*0.8)]
val = filename[int(len(filename)*0.8):]

#分别写入train.txt, test.txt
with open(os.path.join(output,'train.txt'), 'w') as f1, open(os.path.join(output,'trainval.txt'), 'w') as f2,open(os.path.join(output,'val.txt'), 'w') as f3:
    for i in train:
        f1.write(i + '\n')
    for i in trainval:
        f2.write(i + '\n')
    for i in val:
        f3.write(i + '\n')

print('成功!')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

3.3 根据json,制作对应的mask图像

我们首先将所有的json文件存放到单独的文件夹,实例中表示为: "D:\\dataset\\json"

制作mask的图像需要用到labelme的源码。

我们首先找到labelme源码的安装位置:
用anaconda安装的话,windows一般是Users\用户名\.conda\envs\环境名\Lib\site-packages\labelme
然后找到labelme\cli的位置,先备份一下原来的json_to_dataset.py文件,然后用下面的代码覆盖掉原来的json_to_dataset.py。
在这里插入图片描述

import argparse
import base64
import json
import os
import os.path as osp

import PIL.Image
import yaml

from labelme.logger import logger
from labelme import utils

path = "D:\\dataset\\json"
dirs = os.listdir(path)


def label(json_file, out_dir, label_name_to_value):
    # print("json.load(open(json_file))=", json_file)
    # json_file = os.path.join(path, json_file)
    # print("json.load(open(json_file))=", json_file)

    data = json.load(open(json_file))
    if data['imageData']:
        imageData = data['imageData']
    else:
        imagePath = os.path.join(os.path.dirname(json_file), data['imagePath'])
        with open(imagePath, 'rb') as f:
            imageData = f.read()
            imageData = base64.b64encode(imageData).decode('utf-8')
    img = utils.img_b64_to_arr(imageData)

    for shape in sorted(data['shapes'], key=lambda x: x['label']):
        label_name = shape['label']
        if label_name in label_name_to_value:
            label_value = label_name_to_value[label_name]
        else:
            label_value = len(label_name_to_value)
            label_name_to_value[label_name] = label_value
    lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)

    label_names = [None] * (max(label_name_to_value.values()) + 1)
    for name, value in label_name_to_value.items():
        label_names[value] = name
    lbl_viz = utils.draw_label(lbl, img, label_names)

    PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png'))
    utils.lblsave(osp.join(out_dir, 'label.png'), lbl)
    PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png'))

    with open(osp.join(out_dir, 'label_names.txt'), 'w') as f:
        for lbl_name in label_names:
            f.write(lbl_name + '\n')

    logger.warning('info.yaml is being replaced by label_names.txt')
    info = dict(label_names=label_names)
    with open(osp.join(out_dir, 'info.yaml'), 'w') as f:
        yaml.safe_dump(info, f, default_flow_style=False)

    logger.info('Saved to: {}'.format(out_dir))


def main():
    logger.warning('This script is aimed to demonstrate how to convert the'
                   'JSON file to a single image dataset, and not to handle'
                   'multiple JSON files to generate a real-use dataset.')

    parser = argparse.ArgumentParser()
    parser.add_argument('json_file_dir')
    parser.add_argument('-o', '--out', default=None)
    args = parser.parse_args()
    label_name_to_value = {'_background_': 0}

    for json_file in dirs:
        # print("json_file=", json_file)
        if args.out is None:
            json_file = os.path.join(path, json_file)
            out_dir = osp.basename(json_file).replace('.', '_')
            out_dir = osp.join(osp.dirname(json_file), out_dir)
        else:
            # out_dir = args.out
            json_file = os.path.join(path, json_file)
            out_dir = osp.basename(json_file).replace('.', '_')
            out_dir = osp.join(osp.dirname(args.out), out_dir)
            # print('out_dir=',out_dir)
        if not osp.exists(out_dir):
            os.mkdir(out_dir)

        label(json_file, out_dir, label_name_to_value)


if __name__ == '__main__':
    main()


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94

然后在cli目录输入命令行:

python .\json_to_dataset.py json_file_dir -o D:\dataset\output_mask\
  • 1

json_file_dir :必须带的参数
-o :输出目录
然后输出目录就会增加非常多的文件夹:
在这里插入图片描述
每个文件夹下有5个文件,而我们需要将所有的label.png文件放入到VOC格式数据集中的SegmentationClass目录,并且需要改成与原图对应的名称。
在这里插入图片描述
类别放在label_names.txt里,默认会有一个_background_所以我们正常的语义分割至少要有两类。

抽离label.png的脚本:

import os
import shutil

inputdir = 'D:\\dataset\\output_mask'
outputdir = 'D:\\dataset\\belt\\SegmentationClass'

for dir in os.listdir(inputdir):
    # 设置旧文件名(就是路径+文件名)
    oldname = inputdir + os.sep + dir + os.sep + 'label.png'  # os.sep添加系统分隔符
    print("oldname=",oldname)
    png_id = ''
    print("dir=",oldname)
    # 之前的mask命名都是以xxx_json的目录明明,现在需要把最后的_json部分去除,还原原图的名称
    for i in range(len(dir.split('_'))) :
        if i == len(dir.split('_'))-1:
            continue
        else:
            # 原图的名称中可有可能包含一个或多个_,除了最后一个_,其余都保留。
            if png_id != '':
                png_id += '_'
            png_id += dir.split('_')[i]

    # 设置新文件名
    newname = outputdir + os.sep + png_id + '.png'

    shutil.copyfile(oldname, newname)  # 用os模块中的rename方法对文件改名
    print(oldname, '======>', newname)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

执行结束后就可以发现SegmentationClass目录内放入了mask图像。
在这里插入图片描述

4. 修改deeplab+源码,增加自己的数据集

4.1 mypath.py 中加入自己数据集的路径

实例中增加的数据集名称为belt

在这里插入图片描述

belt下的文件结构就是之前提到的VOC结构:

-belt
	- ImageSets
		- Segmentation
			- train.txt
			-train.txt
			- val.txt
	- JPEGImages
	- SegmentationClass
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

4.2 在dataloaders/datasets目录下添加文件

复制一份pascal.py文件,并重命名为自己的数据集名称
在这里插入图片描述
然后打开自己的数据集py文件,修改文件内的类别数和数据集名称:
在这里插入图片描述

4.3 修改dateloaders目录下utils.py

搜素def get_cityscapes_labels()函数,然后在上方添加自己数据集的函数,例如get_belt_labels().
这个函数的主要意思就是给自己每个类设置一个掩膜颜色,有多少个类,就设置多少种颜色。
在这里插入图片描述

然后在decode_segmap函数内添加代码,其中n_classes是你要分割的类别数在这里插入图片描述

4.4 在dataloaders目录下修改__init__.py

在第一行添加数据集名称,复制’pascal’数据集描述,把名称修改为自己数据集的名字
在这里插入图片描述

    if args.dataset == 'belt':
        train_set = belt.VOCSegmentation(args, split='train')
        val_set = belt.VOCSegmentation(args, split='val')

        num_class = train_set.NUM_CLASSES
        train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs)
        val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs)
        test_loader = None

        return train_loader, val_loader, test_loader, num_class
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

4.5 在同级目录中修改train.py约185行添加自己数据集的名称(可以设置为默认)

在这里插入图片描述

5. 开始训练数据

输入指令:

python train.py --backbone mobilenet --lr 0.007 --workers 1 --epochs 50 --batch-size 8 --gpu-ids 0 --checkname deeplab-mobilenet
  • 1

模型保存的路径是在代码内是设置的,在saver.py可以看到保存的路径:run/[datasetname]/[checkname],在示例中的路径就是:run/belt/deeplab-mobilenet
保存的目录中可能会存在很多experiment_*的目录,这是每一此训练都会保存在一个experiment_{}的目录内,最新的训练结果保存在最后id的目录上。此外,最优的模型还会保存到run/[datasetname]/[checkname]中的model_best.pth.tar中。
在这里插入图片描述
在这里插入图片描述

若是出现报错:
AttributeError: ‘DeepLab’ object has no attribute ‘module’
在这里插入图片描述
解决方式:
打开train.py,找到报错的地方 'state_dict': self.model.module.state_dict(),修改为

`'state_dict': self.model.state_dict()
  • 1

在这里插入图片描述

6. 测试

源码中没有测试代码,需要自己放入一个测试py文件。
修改–in-path为数据集的测试图片,最后的结果保存在–in-path中

#
# demo.py
#
import argparse
import os
import numpy as np
import time
 
from modeling.deeplab import *
from dataloaders import custom_transforms as tr
from PIL import Image
from torchvision import transforms
from dataloaders.utils import  *
from torchvision.utils import make_grid, save_image
 
def main():
 
    parser = argparse.ArgumentParser(description="PyTorch DeeplabV3Plus Training")
    parser.add_argument('--in-path', type=str,  default='/root/home/zyx/Seg552_VOC/test',
                        help='image to test')
    # parser.add_argument('--out-path', type=str, required=True, help='mask image to save')
    parser.add_argument('--backbone', type=str, default='resnet',
                        choices=['resnet', 'xception', 'drn', 'mobilenet'],
                        help='backbone name (default: resnet)')
    parser.add_argument('--ckpt', type=str, default='deeplab-resnet.pth',
                        help='saved model')
    parser.add_argument('--out-stride', type=int, default=16,
                        help='network output stride (default: 8)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--gpu-ids', type=str, default='0',
                        help='use which gpu to train, must be a \
                        comma-separated list of integers only (default=0)')
    parser.add_argument('--dataset', type=str, default='belt',
                        choices=['pascal', 'coco', 'cityscapes','belt'],
                        help='dataset name (default: pascal)')
    parser.add_argument('--crop-size', type=int, default=513,
                        help='crop image size')
    parser.add_argument('--num_classes', type=int, default=2,
                        help='crop image size')
    parser.add_argument('--sync-bn', type=bool, default=None,
                        help='whether to use sync bn (default: auto)')
    parser.add_argument('--freeze-bn', type=bool, default=False,
                        help='whether to freeze bn parameters (default: False)')
 
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    if args.cuda:
        try:
            args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
        except ValueError:
            raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
 
    if args.sync_bn is None:
        if args.cuda and len(args.gpu_ids) > 1:
            args.sync_bn = True
        else:
            args.sync_bn = False
    model_s_time = time.time()
    model = DeepLab(num_classes=args.num_classes,
                    backbone=args.backbone,
                    output_stride=args.out_stride,
                    sync_bn=args.sync_bn,
                    freeze_bn=args.freeze_bn)
	model = nn.DataParallel(model)

    ckpt = torch.load(args.ckpt, map_location='cpu')
    model.load_state_dict(ckpt['state_dict'])
    model = model.cuda()
    model_u_time = time.time()
    model_load_time = model_u_time-model_s_time
    print("model load time is {}".format(model_load_time))
 
    composed_transforms = transforms.Compose([
        tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
        tr.ToTensor()])
    for name in os.listdir(args.in_path):
        s_time = time.time()
        image = Image.open(args.in_path+"/"+name).convert('RGB')
 
        # image = Image.open(args.in_path).convert('RGB')
        target = Image.open(args.in_path+"/"+name).convert('L')
        sample = {'image': image, 'label': target}
        tensor_in = composed_transforms(sample)['image'].unsqueeze(0)
 
        model.eval()
        if args.cuda:
            tensor_in = tensor_in.cuda()
        with torch.no_grad():
            output = model(tensor_in)
 
        grid_image = make_grid(decode_seg_map_sequence(torch.max(output[:3], 1)[1].detach().cpu().numpy()),
                                3, normalize=False, range=(0, 255))
        save_image(grid_image,args.in_path+"/"+"{}_mask.png".format(name[0:-4]))
        u_time = time.time()
        img_time = u_time-s_time
        print("image:{} time: {} ".format(name,img_time))
        # save_image(grid_image, args.out_path)
        # print("type(grid) is: ", type(grid_image))
        # print("grid_image.shape is: ", grid_image.shape)
    print("image save in in_path.")
if __name__ == "__main__":
   main()
 
# python demo.py --in-path your_file --out-path your_dst_file
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106

注意点:
参数--dataset代码中加入自己的类:

    parser.add_argument('--dataset', type=str, default='belt',
                        choices=['pascal', 'coco', 'cityscapes','belt'],
                        help='dataset name (default: pascal)')
  • 1
  • 2
  • 3

输入测试指令:

 python testdemo.py --dataset belt --num_classes 2 --ckpt run/Seg552/deeplab-mobilenet/checkpoint.pth.tar --backbone mobilenet 
  • 1

常见报错:

1. state_dict错误

在这里插入图片描述

RuntimeError: Error(s) in loading state_dict for DeepLab:         Missing key(s) in state_dict: "
  • 1

在原版中会出现,在ckpt = torch.load(args.ckpt, map_location='cpu')之前加入 model = nn.DataParallel(model) 即可。

2. CUDA报错

在这里插入图片描述

报错如下:raise AssertionError("Torch not compiled with CUDA enabled") AssertionError: Torch not compiled with CUDA enabled
解决方式:

  1. 可能是在gpu上训练,用了torch-cpu,检查torch版本。
  2. 如果版本没问题,注释掉:
    model = model.cuda()
  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/262483
推荐阅读
相关标签
  

闽ICP备14008679号