赞
踩
记录一下提取Coco自行车类别的过程
1.安装pycocotools github地址:https://github.com/philferriere/cocoapi
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
2.提取其中的bicycle类的代码如下:
需要修改的地方
savepath
datasets_list
classes_names
dataDir
使用的这篇博客中的代码
https://blog.csdn.net/weixin_38632246/article/details/97141364
- from pycocotools.coco import COCO
- import os
- import shutil
- from tqdm import tqdm
- # import skimage.io as io
- import matplotlib.pyplot as plt
- import cv2
- from PIL import Image, ImageDraw
-
- #提取出的类别的保存路径
- savepath="/media/deepnorth/14b6945d-9936-41a8-aeac-505b96fc2be8/COCO/"
-
- img_dir=savepath+'images/'
- anno_dir=savepath+'Annotations/'
- # datasets_list=['train2014', 'val2014']
- datasets_list=['train2014']
-
- #这里填写需要提取的类别,本人此处提取bicycle
- classes_names = ['bicycle']
-
- #原coco数据集的目录
- dataDir= '/media/deepnorth/14b6945d-9936-41a8-aeac-505b96fc2be8/COCO/'
-
- headstr = """\
- <annotation>
- <folder>VOC</folder>
- <filename>%s</filename>
- <source>
- <database>My Database</database>
- <annotation>COCO</annotation>
- <image>flickr</image>
- <flickrid>NULL</flickrid>
- </source>
- <owner>
- <flickrid>NULL</flickrid>
- <name>company</name>
- </owner>
- <size>
- <width>%d</width>
- <height>%d</height>
- <depth>%d</depth>
- </size>
- <segmented>0</segmented>
- """
- objstr = """\
- <object>
- <name>%s</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>%d</xmin>
- <ymin>%d</ymin>
- <xmax>%d</xmax>
- <ymax>%d</ymax>
- </bndbox>
- </object>
- """
-
- tailstr = '''\
- </annotation>
- '''
-
- #if the dir is not exists,make it,else delete it
- def mkr(path):
- if os.path.exists(path):
- shutil.rmtree(path)
- os.mkdir(path)
- else:
- os.mkdir(path)
- mkr(img_dir)
- mkr(anno_dir)
- def id2name(coco):
- classes=dict()
- for cls in coco.dataset['categories']:
- classes[cls['id']]=cls['name']
- return classes
-
- def write_xml(anno_path,head, objs, tail):
- f = open(anno_path, "w")
- f.write(head)
- for obj in objs:
- f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))
- f.write(tail)
-
-
- def save_annotations_and_imgs(coco,dataset,filename,objs):
- #eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xml
- anno_path=anno_dir+filename[:-3]+'xml'
- img_path=dataDir+dataset+'/'+filename
- print(img_path)
- dst_imgpath=img_dir+filename
-
- img=cv2.imread(img_path)
- #if (img.shape[2] == 1):
- # print(filename + " not a RGB image")
- # return
- shutil.copy(img_path, dst_imgpath)
-
- head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
- tail = tailstr
- write_xml(anno_path,head, objs, tail)
-
-
- def showimg(coco,dataset,img,classes,cls_id,show=True):
- global dataDir
- I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))
- #通过id,得到注释的信息
- annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
- # print(annIds)
- anns = coco.loadAnns(annIds)
- # print(anns)
- # coco.showAnns(anns)
- objs = []
- for ann in anns:
- class_name=classes[ann['category_id']]
- if class_name in classes_names:
- print(class_name)
- if 'bbox' in ann:
- bbox=ann['bbox']
- xmin = int(bbox[0])
- ymin = int(bbox[1])
- xmax = int(bbox[2] + bbox[0])
- ymax = int(bbox[3] + bbox[1])
- obj = [class_name, xmin, ymin, xmax, ymax]
- objs.append(obj)
- draw = ImageDraw.Draw(I)
- draw.rectangle([xmin, ymin, xmax, ymax])
- if show:
- plt.figure()
- plt.axis('off')
- plt.imshow(I)
- plt.show()
-
- return objs
-
- for dataset in datasets_list:
- #./COCO/annotations/instances_train2014.json
- annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)
-
- #COCO API for initializing annotated data
- coco = COCO(annFile)
-
- #show all classes in coco
- classes = id2name(coco)
- print(classes)
- #[1, 2, 3, 4, 6, 8]
- classes_ids = coco.getCatIds(catNms=classes_names)
- print(classes_ids)
- for cls in classes_names:
- #Get ID number of this class
- cls_id=coco.getCatIds(catNms=[cls])
- img_ids=coco.getImgIds(catIds=cls_id)
- print(cls,len(img_ids))
- # imgIds=img_ids[0:10]
- for imgId in tqdm(img_ids):
- img = coco.loadImgs(imgId)[0]
- filename = img['file_name']
- # print(filename)
- objs=showimg(coco, dataset, img, classes,classes_ids,show=False)
- print(objs)
- save_annotations_and_imgs(coco, dataset, filename, objs)
-
COCO数据集2014
代码执行完之后会生成对应的 images文件夹和 Annotations(.xml)文件夹
有了这两个文件就可以利用voc的代码转换为yolo目标检测的txt标签文件
相关代码
需要修改的参数
classes
data_path
list_file
in_file
out_file
- import xml.etree.ElementTree as ET
- import pickle
- import os
- from os import listdir, getcwd
- from os.path import join
-
-
- classes = ["bicycle"]
-
-
-
- def convert(size, box):
- dw = 1./(size[0])
- dh = 1./(size[1])
- x = (box[0] + box[1])/2.0 - 1
- y = (box[2] + box[3])/2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x*dw
- w = w*dw
- y = y*dh
- h = h*dh
- return (x,y,w,h)
-
- def convert_annotation(image_id):
- in_file = open('coco_voc_val/Annotations/%s.xml'%(image_id))
- out_file = open('coco_voc_val/labels/%s.txt'%(image_id), 'w')
- tree=ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- print(cls)
- if cls not in classes or int(difficult)==1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
- bb = convert((w,h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
-
- data_path = '/media/COCO/coco_voc_val/images'
- img_names = os.listdir(data_path)
-
- list_file = open('2014_val.txt', 'w')
- for img_name in img_names:
- if not os.path.exists('coco_voc_val/labels'):
- os.makedirs('coco_voc_val/labels')
-
- list_file.write('/media/COCO/coco_voc_val/images/%s\n'%img_name)
- image_id = img_name[:-4]
- convert_annotation(image_id)
-
- list_file.close()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。