赞
踩
论文链接:https://github.com/WongKinYiu/yolov9/tree/main
本文方法并不能直接替代YOLOv9原作者尚未开源的两个小模型,但可以按比例减小模型尺寸。类似YOLOv5、v8等,可以方便测试YOLOv9在数据集上的性能!方法来源于网络。
- import argparse
- import os
- import platform
- import sys
- from copy import deepcopy
- from pathlib import Path
-
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[1] # YOLO root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- if platform.system() != 'Windows':
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
-
- from models.common import *
- from models.experimental import *
- from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
- from utils.plots import feature_visualization
- from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
- time_sync)
- from utils.tal.anchor_generator import make_anchors, dist2bbox
-
- try:
- import thop # for FLOPs computation
- except ImportError:
- thop = None
-
-
- class Detect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
- self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- for i in range(self.nl):
- x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
- if self.training:
- return x
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- y = torch.cat((dbox, cls.sigmoid()), 1)
- return y if self.export else (y, x)
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class DDetect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
- self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- for i in range(self.nl):
- x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
- if self.training:
- return x
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- y = torch.cat((dbox, cls.sigmoid()), 1)
- return y if self.export else (y, x)
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class DualDetect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) // 2 # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
- c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
- self.cv4 = nn.ModuleList(
- nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
- self.cv5 = nn.ModuleList(
- nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
- self.dfl = DFL(self.reg_max)
- self.dfl2 = DFL(self.reg_max)
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- d1 = []
- d2 = []
- for i in range(self.nl):
- d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
- d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
- if self.training:
- return [d1, d2]
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
- dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
- return y if self.export else (y, [d1, d2])
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class DualDDetect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) // 2 # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
- c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
- self.cv4 = nn.ModuleList(
- nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
- self.cv5 = nn.ModuleList(
- nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
- self.dfl = DFL(self.reg_max)
- self.dfl2 = DFL(self.reg_max)
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- d1 = []
- d2 = []
- for i in range(self.nl):
- d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
- d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
- if self.training:
- return [d1, d2]
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
- dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
- return y if self.export else (y, [d1, d2])
- #y = torch.cat((dbox2, cls2.sigmoid()), 1)
- #return y if self.export else (y, d2)
- #y1 = torch.cat((dbox, cls.sigmoid()), 1)
- #y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
- #return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
- #return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class TripleDetect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) // 3 # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
- c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
- c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
- self.cv4 = nn.ModuleList(
- nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
- self.cv5 = nn.ModuleList(
- nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
- self.cv6 = nn.ModuleList(
- nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
- self.cv7 = nn.ModuleList(
- nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
- self.dfl = DFL(self.reg_max)
- self.dfl2 = DFL(self.reg_max)
- self.dfl3 = DFL(self.reg_max)
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- d1 = []
- d2 = []
- d3 = []
- for i in range(self.nl):
- d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
- d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
- d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
- if self.training:
- return [d1, d2, d3]
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
- dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
- dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
- return y if self.export else (y, [d1, d2, d3])
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class TripleDDetect(nn.Module):
- # YOLO Detect head for detection models
- dynamic = False # force grid reconstruction
- export = False # export mode
- shape = None
- anchors = torch.empty(0) # init
- strides = torch.empty(0) # init
-
- def __init__(self, nc=80, ch=(), inplace=True): # detection layer
- super().__init__()
- self.nc = nc # number of classes
- self.nl = len(ch) // 3 # number of detection layers
- self.reg_max = 16
- self.no = nc + self.reg_max * 4 # number of outputs per anchor
- self.inplace = inplace # use inplace ops (e.g. slice assignment)
- self.stride = torch.zeros(self.nl) # strides computed during build
-
- c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
- max((ch[0], min((self.nc * 2, 128)))) # channels
- c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
- max((ch[self.nl], min((self.nc * 2, 128)))) # channels
- c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
- max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
- self.cv2 = nn.ModuleList(
- nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
- nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
- self.cv3 = nn.ModuleList(
- nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
- self.cv4 = nn.ModuleList(
- nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
- nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
- self.cv5 = nn.ModuleList(
- nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
- self.cv6 = nn.ModuleList(
- nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
- nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
- self.cv7 = nn.ModuleList(
- nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
- self.dfl = DFL(self.reg_max)
- self.dfl2 = DFL(self.reg_max)
- self.dfl3 = DFL(self.reg_max)
-
- def forward(self, x):
- shape = x[0].shape # BCHW
- d1 = []
- d2 = []
- d3 = []
- for i in range(self.nl):
- d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
- d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
- d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
- if self.training:
- return [d1, d2, d3]
- elif self.dynamic or self.shape != shape:
- self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
- self.shape = shape
-
- box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
- dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
- dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
- dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
- #y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
- #return y if self.export else (y, [d1, d2, d3])
- y = torch.cat((dbox3, cls3.sigmoid()), 1)
- return y if self.export else (y, d3)
-
- def bias_init(self):
- # Initialize Detect() biases, WARNING: requires stride availability
- m = self # self.model[-1] # Detect() module
- # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
- # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
- for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
- for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
- a[-1].bias.data[:] = 1.0 # box
- b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
-
-
- class Segment(Detect):
- # YOLO Segment head for segmentation models
- def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
- super().__init__(nc, ch, inplace)
- self.nm = nm # number of masks
- self.npr = npr # number of protos
- self.proto = Proto(ch[0], self.npr, self.nm) # protos
- self.detect = Detect.forward
-
- c4 = max(ch[0] // 4, self.nm)
- self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
-
- def forward(self, x):
- p = self.proto(x[0])
- bs = p.shape[0]
-
- mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
- x = self.detect(self, x)
- if self.training:
- return x, mc, p
- return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
-
-
- class Panoptic(Detect):
- # YOLO Panoptic head for panoptic segmentation models
- def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
- super().__init__(nc, ch, inplace)
- self.sem_nc = sem_nc
- self.nm = nm # number of masks
- self.npr = npr # number of protos
- self.proto = Proto(ch[0], self.npr, self.nm) # protos
- self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
- self.detect = Detect.forward
-
- c4 = max(ch[0] // 4, self.nm)
- self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
-
-
- def forward(self, x):
- p = self.proto(x[0])
- s = self.uconv(x[0])
- bs = p.shape[0]
-
- mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
- x = self.detect(self, x)
- if self.training:
- return x, mc, p, s
- return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
-
-
- class BaseModel(nn.Module):
- # YOLO base model
- def forward(self, x, profile=False, visualize=False):
- return self._forward_once(x, profile, visualize) # single-scale inference, train
-
- def _forward_once(self, x, profile=False, visualize=False):
- y, dt = [], [] # outputs
- for m in self.model:
- if m.f != -1: # if not from previous layer
- x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
- if profile:
- self._profile_one_layer(m, x, dt)
- x = m(x) # run
- y.append(x if m.i in self.save else None) # save output
- if visualize:
- feature_visualization(x, m.type, m.i, save_dir=visualize)
- return x
-
- def _profile_one_layer(self, m, x, dt):
- c = m == self.model[-1] # is final layer, copy input as inplace fix
- o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
- t = time_sync()
- for _ in range(10):
- m(x.copy() if c else x)
- dt.append((time_sync() - t) * 100)
- if m == self.model[0]:
- LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
- LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
- if c:
- LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
-
- def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
- LOGGER.info('Fusing layers... ')
- for m in self.model.modules():
- if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
- m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
- delattr(m, 'bn') # remove batchnorm
- m.forward = m.forward_fuse # update forward
- self.info()
- return self
-
- def info(self, verbose=False, img_size=640): # print model information
- model_info(self, verbose, img_size)
-
- def _apply(self, fn):
- # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
- self = super()._apply(fn)
- m = self.model[-1] # Detect()
- if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment)):
- m.stride = fn(m.stride)
- m.anchors = fn(m.anchors)
- m.strides = fn(m.strides)
- # m.grid = list(map(fn, m.grid))
- return self
-
-
- class DetectionModel(BaseModel):
- # YOLO detection model
- def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
- super().__init__()
- if isinstance(cfg, dict):
- self.yaml = cfg # model dict
- else: # is *.yaml
- import yaml # for torch hub
- self.yaml_file = Path(cfg).name
- with open(cfg, encoding='ascii', errors='ignore') as f:
- self.yaml = yaml.safe_load(f) # model dict
-
- # Define model
- ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
- if nc and nc != self.yaml['nc']:
- LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
- self.yaml['nc'] = nc # override yaml value
- if anchors:
- LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
- self.yaml['anchors'] = round(anchors) # override yaml value
- self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
- self.names = [str(i) for i in range(self.yaml['nc'])] # default names
- self.inplace = self.yaml.get('inplace', True)
-
- # Build strides, anchors
- m = self.model[-1] # Detect()
- if isinstance(m, (Detect, DDetect, Segment)):
- s = 256 # 2x min stride
- m.inplace = self.inplace
- forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment)) else self.forward(x)
- m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
- # check_anchor_order(m)
- # m.anchors /= m.stride.view(-1, 1, 1)
- self.stride = m.stride
- m.bias_init() # only run once
- if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect)):
- s = 256 # 2x min stride
- m.inplace = self.inplace
- #forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualSegment)) else self.forward(x)[0]
- forward = lambda x: self.forward(x)[0]
- m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
- # check_anchor_order(m)
- # m.anchors /= m.stride.view(-1, 1, 1)
- self.stride = m.stride
- m.bias_init() # only run once
-
- # Init weights, biases
- initialize_weights(self)
- self.info()
- LOGGER.info('')
-
- def forward(self, x, augment=False, profile=False, visualize=False):
- if augment:
- return self._forward_augment(x) # augmented inference, None
- return self._forward_once(x, profile, visualize) # single-scale inference, train
-
- def _forward_augment(self, x):
- img_size = x.shape[-2:] # height, width
- s = [1, 0.83, 0.67] # scales
- f = [None, 3, None] # flips (2-ud, 3-lr)
- y = [] # outputs
- for si, fi in zip(s, f):
- xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
- yi = self._forward_once(xi)[0] # forward
- # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
- yi = self._descale_pred(yi, fi, si, img_size)
- y.append(yi)
- y = self._clip_augmented(y) # clip augmented tails
- return torch.cat(y, 1), None # augmented inference, train
-
- def _descale_pred(self, p, flips, scale, img_size):
- # de-scale predictions following augmented inference (inverse operation)
- if self.inplace:
- p[..., :4] /= scale # de-scale
- if flips == 2:
- p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
- elif flips == 3:
- p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
- else:
- x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
- if flips == 2:
- y = img_size[0] - y # de-flip ud
- elif flips == 3:
- x = img_size[1] - x # de-flip lr
- p = torch.cat((x, y, wh, p[..., 4:]), -1)
- return p
-
- def _clip_augmented(self, y):
- # Clip YOLO augmented inference tails
- nl = self.model[-1].nl # number of detection layers (P3-P5)
- g = sum(4 ** x for x in range(nl)) # grid points
- e = 1 # exclude layer count
- i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
- y[0] = y[0][:, :-i] # large
- i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
- y[-1] = y[-1][:, i:] # small
- return y
-
-
- Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
-
-
- class SegmentationModel(DetectionModel):
- # YOLO segmentation model
- def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
- super().__init__(cfg, ch, nc, anchors)
-
-
- class ClassificationModel(BaseModel):
- # YOLO classification model
- def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
- super().__init__()
- self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
-
- def _from_detection_model(self, model, nc=1000, cutoff=10):
- # Create a YOLO classification model from a YOLO detection model
- if isinstance(model, DetectMultiBackend):
- model = model.model # unwrap DetectMultiBackend
- model.model = model.model[:cutoff] # backbone
- m = model.model[-1] # last layer
- ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
- c = Classify(ch, nc) # Classify()
- c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
- model.model[-1] = c # replace
- self.model = model.model
- self.stride = model.stride
- self.save = []
- self.nc = nc
-
- def _from_yaml(self, cfg):
- # Create a YOLO classification model from a *.yaml file
- self.model = None
-
-
- def parse_model(d, ch): # model_dict, input_channels(3)
- # Parse a YOLO model.yaml dictionary
- LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
- anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
- if act:
- Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
- LOGGER.info(f"{colorstr('activation:')} {act}") # print
- na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
- no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
-
- layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
- for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
- m = eval(m) if isinstance(m, str) else m # eval strings
- for j, a in enumerate(args):
- with contextlib.suppress(NameError):
- args[j] = eval(a) if isinstance(a, str) else a # eval strings
-
- n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
- if m in {
- Conv, AConv, ConvTranspose,
- Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
- RepNCSPELAN4, SPPELAN}:
- c1, c2 = ch[f], args[0]
- if c2 != no: # if not output
- c2 = make_divisible(c2 * gw, 8)
- if m in (RepNCSPELAN4, ):
- args[1] = make_divisible(args[1] * gw, 8)
- args[2] = make_divisible(args[2] * gw, 8)
-
- args = [c1, c2, *args[1:]]
- if m in {BottleneckCSP, SPPCSPC}:
- args.insert(2, n) # number of repeats
- n = 1
- elif m is nn.BatchNorm2d:
- args = [ch[f]]
- elif m is Concat:
- c2 = sum(ch[x] for x in f)
- elif m is Shortcut:
- c2 = ch[f[0]]
- elif m is ReOrg:
- c2 = ch[f] * 4
- elif m is CBLinear:
- c2 = [make_divisible(i * gw, 8) for i in args[0]]
- c1 = ch[f]
- args = [c1, c2, *args[1:]]
- elif m is CBFuse:
- c2 = ch[f[-1]]
- # TODO: channel, gw, gd
- elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment}:
- args.append([ch[x] for x in f])
- # if isinstance(args[1], int): # number of anchors
- # args[1] = [list(range(args[1] * 2))] * len(f)
- if m in {Segment}:
- args[2] = make_divisible(args[2] * gw, 8)
- elif m is Contract:
- c2 = ch[f] * args[0] ** 2
- elif m is Expand:
- c2 = ch[f] // args[0] ** 2
- else:
- c2 = ch[f]
-
- m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
- t = str(m)[8:-2].replace('__main__.', '') # module type
- np = sum(x.numel() for x in m_.parameters()) # number params
- m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
- LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
- save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
- layers.append(m_)
- if i == 0:
- ch = []
- ch.append(c2)
- return nn.Sequential(*layers), sorted(save)
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
- parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--profile', action='store_true', help='profile model speed')
- parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
- parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
- opt = parser.parse_args()
- opt.cfg = check_yaml(opt.cfg) # check YAML
- print_args(vars(opt))
- device = select_device(opt.device)
-
- # Create model
- im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
- model = Model(opt.cfg).to(device)
- model.eval()
-
- # Options
- if opt.line_profile: # profile layer by layer
- model(im, profile=True)
-
- elif opt.profile: # profile forward-backward
- results = profile(input=im, ops=[model], n=3)
-
- elif opt.test: # test all models
- for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
- try:
- _ = Model(cfg)
- except Exception as e:
- print(f'Error in {cfg}: {e}')
-
- else: # report fused model summary
- model.fuse()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。